当前位置:   article > 正文

叫板GPT-4的Gemini,我做了一个聊天网页,可图片输入,附教程_slider gpt4

slider gpt4

先看效果:

简介

Gemini 是谷歌研发的最新一代大语言模型,目前有三个版本,被称为中杯、大杯、超大杯,Gemini Ultra 号称可与GPT-4一较高低:

  • Gemini Nano(预览访问)
    为设备端体验而构建的最高效模型,支持离线使用场景。
  • Gemini Pro(已推出)
    性能最佳的模型,具有各种文本和图像推理任务的功能。
  • Gemini Ultra(预览访问)
    将于2024年初推出,用于大规模高度复杂文本和图像推理任务的最强大模型。

Gemini Pro在八项基准测试中的六项上超越了GPT-3.5,被誉为“市场上最强大的免费聊天AI工具”。

本文,我们使用的是 Gemini Pro,Pro有两个模型:

  • gemini-pro:针对仅文本提示进行了优化。
  • gemini-pro-vision:针对文本和图像提示进行了优化。

API 免费!

Google这次确实给力,API直接免费开放,只要申请就给!

如何本地执行脚本 或 开发一个前端页面,顺利白嫖Google的Gemini呢?

先去 https://ai.google.dev/ 创建Gemini API key

顺便说一句,感兴趣可以去深入学习一下文档:https://ai.google.dev/docs

Gemini 构建应用程序所需的所有信息都可以在这个网站查到,包括Python、Android(Kotlin)、Node.js 和 Swift的支持文档。

我们直接看Python 快速入门指南:

https://ai.google.dev/tutorials/python_quickstart

更省事儿的是直接从这个官方示例中copy代码:

https://github.com/google/generative-ai-docs/blob/main/site/en/tutorials/python_quickstart.ipynb

核心代码

本地运行脚本,代码其实简单到离谱,6行足矣。

注:网络要畅通

# 先安装google-generativeai
pip install -q -U google-generativeai
  • 1
  • 2

文本对话

import google.generativeai as genai
GOOGLE_API_KEY='这里填写上一步获取的api'
genai.configure(api_key=GOOGLE_API_KEY)
model = genai.GenerativeModel('gemini-pro')
response = model.generate_content("你好")
print(response.text)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

运行一下:

图片也可以作为输入,比如让Gemini评价一下我的头像

import PIL.Image
import google.generativeai as genai
img = PIL.Image.open('img.png')
GOOGLE_API_KEY='这里填写上一步获取的api'
genai.configure(api_key=GOOGLE_API_KEY)
model = genai.GenerativeModel('gemini-pro-vision')
response = model.generate_content(["请评价一下这张照片", img])
response.resolve()
print(response.text)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

运行一下:

做个网页版

网页版可以使用streamlit或者Gradio实现,Gradio 本公众号写过,包括如何将项目免费部署到huggingface。需要了解更多:可以参考我这篇文章腾讯的这个算法,我搬到了网上,随便玩!

也可以部署到自己的服务器,加个域名就OK了

这里参考了这位大佬的代码:https://github.com/meryemsakin/GeminiGradioApp

我修改了源代码中GOOGLE_API_KEY获取方式并加了登陆认证,还做了一点中文翻译

代码如下:

import time
from typing import List, Tuple, Optional

import google.generativeai as genai
import gradio as gr
from PIL import Image

print("google-generativeai:", genai.__version__)

TITLE = """<h1 align="center">Gemini App</h1>"""
SUBTITLE = """<h2 align="center">仅做试玩,不定期下线</h2>"""
GOOGLE_API_KEY='这里填写上一步获取的api'

AVATAR_IMAGES = (
    None,
    "image.png"
)


def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
    if not stop_sequences:
        return None
    return [sequence.strip() for sequence in stop_sequences.split(",")]


def user(text_prompt: str, chatbot: List[Tuple[str, str]]):
    return "", chatbot + [[text_prompt, None]]


def bot(
    #google_key: str,
    image_prompt: Optional[Image.Image],
    temperature: float,
    max_output_tokens: int,
    stop_sequences: str,
    top_k: int,
    top_p: float,
    chatbot: List[Tuple[str, str]]
):

    text_prompt = chatbot[-1][0]
    genai.configure(api_key=GOOGLE_API_KEY)
    generation_config = genai.types.GenerationConfig(
        temperature=temperature,
        max_output_tokens=max_output_tokens,
        stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences),
        top_k=top_k,
        top_p=top_p)

    if image_prompt is None:
        model = genai.GenerativeModel('gemini-pro')
        response = model.generate_content(
            text_prompt,
            stream=True,
            generation_config=generation_config)
        response.resolve()
    else:
        model = genai.GenerativeModel('gemini-pro-vision')
        response = model.generate_content(
            [text_prompt, image_prompt],
            stream=True,
            generation_config=generation_config)
        response.resolve()

    # streaming effect
    chatbot[-1][1] = ""
    for chunk in response:
        for i in range(0, len(chunk.text), 10):
            section = chunk.text[i:i + 10]
            chatbot[-1][1] += section
            time.sleep(0.01)
            yield chatbot


image_prompt_component = gr.Image(type="pil", label="Image", scale=1)
chatbot_component = gr.Chatbot(
    label='Gemini',
    bubble_full_width=False,
    avatar_images=AVATAR_IMAGES,
    scale=2
)
text_prompt_component = gr.Textbox(
    placeholder="你好!",
    label="请在这里提问···"
)
run_button_component = gr.Button()
temperature_component = gr.Slider(
    minimum=0,
    maximum=1.0,
    value=0.4,
    step=0.05,
    label="Temperature",
    info=(
        "Temperature 控制令牌选择的随机程度 "
        "较低的Temperature适用于期望获得真实或正确回答的提示, "
        "而较高的Temperature可以导致更多样化或意外的结果 "
    ))
max_output_tokens_component = gr.Slider(
    minimum=1,
    maximum=2048,
    value=1024,
    step=1,
    label="Token limit",
    info=(
        "Token 限制确定每个提示可以获得的最大文本输出量 "
        "每个 Token 大约为四个字符,默认值为 2048 "
    ))

stop_sequences_component = gr.Textbox(
    label="Add stop sequence",
    value="",
    type="text",
    placeholder="STOP, END",
    info=(
        "停止序列是一系列字符(包括空格),如果模型遇到它,会停止生成响应"
        "该序列不作为响应的一部分,"
        "可以添加多达5个停止序列"
    ))
top_k_component = gr.Slider(
    minimum=1,
    maximum=40,
    value=32,
    step=1,
    label="Top-K",
    info=(
        "Top-k 改变了模型为输出选择 token 的方式 "
        "Top-k 为 1 意味着所选 token 在模型词汇表中所有 token 中是最可能的(也称为贪心解码)"
        "而 top-k 为 3 意味着下一个 token 从最可能的 3 个 token 中选取(使用temperature)"
    ))
top_p_component = gr.Slider(
    minimum=0,
    maximum=1,
    value=1,
    step=0.01,
    label="Top-P",
    info=(
        "Top-p 改变了模型为输出选择 token 的方式 "
        "token 从最可能到最不可能选择,直到它们的概率之和等于 top-p 值 "
        "如果 token A、B 和 C 的概率分别为 0.3、0.2 和 0.1,top-p 值为 0.5 "
        "那么模型将选择 A 或 B 作为下一个 token(使用temperature) "
    ))

user_inputs = [
    text_prompt_component,
    chatbot_component
]

bot_inputs = [
    image_prompt_component,
    temperature_component,
    max_output_tokens_component,
    stop_sequences_component,
    top_k_component,
    top_p_component,
    chatbot_component
]

with gr.Blocks() as demo:
    gr.HTML(TITLE)
    gr.HTML(SUBTITLE)
    with gr.Column():
        with gr.Row():
            image_prompt_component.render()
            chatbot_component.render()
        text_prompt_component.render()
        run_button_component.render()
        with gr.Accordion("Parameters", open=False):
            temperature_component.render()
            max_output_tokens_component.render()
            stop_sequences_component.render()
            with gr.Accordion("Advanced", open=False):
                top_k_component.render()
                top_p_component.render()

    run_button_component.click(
        fn=user,
        inputs=user_inputs,
        outputs=[text_prompt_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
    )

    text_prompt_component.submit(
        fn=user,
        inputs=user_inputs,
        outputs=[text_prompt_component, chatbot_component],
        queue=False
    ).then(
        fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
    )

demo.queue(max_size=99).launch(auth=("用户名", "密码"),debug=True)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193

部署到服务器涉及Nginx配置,域名注册、域名解析等等,蛮麻烦的,这里就不展开了。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/空白诗007/article/detail/961763
推荐阅读
相关标签
  

闽ICP备14008679号