赞
踩
水果识别 | SDU.LIN
训练包括:
1. 更改voc_label.py生成label文件
2. 修改要训练的网络配置文件
3. 修改voc.names
4. 修改voc.data
5. 训练
该文件在/darknet/scripts/目录下
- import xml.etree.ElementTree as ET
- import pickle
- import os
- from os import listdir, getcwd
- from os.path import join
-
- # sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
- # classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
-
- sets=[('2007', 'train')] 这里只用到训练,数据集命名为VOC2017
- classes = ["apple", "pear", "banana"] 只用了三个类别作为展示
-
-
- def convert(size, box):
- dw = 1./(size[0])
- dh = 1./(size[1])
- x = (box[0] + box[1])/2.0 - 1
- y = (box[2] + box[3])/2.0 - 1
- w = box[1] - box[0]
- h = box[3] - box[2]
- x = x*dw
- w = w*dw
- y = y*dh
- h = h*dh
- return (x,y,w,h)
-
- def convert_annotation(year, image_id):
- in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
- out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
- tree=ET.parse(in_file)
- root = tree.getroot()
- size = root.find('size')
- w = int(size.find('width').text)
- h = int(size.find('height').text)
-
- for obj in root.iter('object'):
- difficult = obj.find('difficult').text
- cls = obj.find('name').text
- if cls not in classes or int(difficult)==1:
- continue
- cls_id = classes.index(cls)
- xmlbox = obj.find('bndbox')
- b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
- bb = convert((w,h), b)
- out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + 'n')
-
- wd = getcwd()
-
- for year, image_set in sets:
- if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)):
- os.makedirs('VOCdevkit/VOC%s/labels/'%(year))
- image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
- list_file = open('%s_%s.txt'%(year, image_set), 'w')
- for image_id in image_ids:
- list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpgn'%(wd, year, image_id))
- convert_annotation(year, image_id)
- list_file.close()

修改好后执行python voc_label.py
在scripts/VOCdevkit/VOC2007目录下生成了labels文件夹,文件夹里面长这个样子的:
同时会在/darknet/scripts目录下生成2007_train.txt文件
我用到的yolov3,所以就修改/cfg/yolove-voc.cfg
- [net]
- # Testing
- # batch=1
- # subdivisions=1
- # Training # 训练的时候把Testing的参数注释掉,把Training的参数取消注释
- batch=64
- subdivisions=16
- width=416
- height=416
- channels=3
- momentum=0.9
- decay=0.0005
- angle=0
- saturation = 1.5
- exposure = 1.5
- hue=.1
-
- learning_rate=0.001 # 根据需要修改学习率,就是梯度下降的速率,越大训练速度越快但会牺牲准确率
- burn_in=1000
- max_batches = 100000 # 训练的总次数
- policy=steps
- steps=100,10000,70000,80000,90000 # 训练到相应次数后学习率变化
- scales=10,10,.1,.1,.1 # 学习率变化情况,是累乘操作
-
- ......
-
-
- [convolutional]
- size=1
- stride=1
- pad=1
- filters=24 # filters = 3*(calsses + 5)
- activation=linear
-
- [yolo]
- mask = 0,1,2
- anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
- classes=3 # 修改类别数量
- num=9
- jitter=.3
- ignore_thresh = .5
- truth_thresh = 1
- random=1 # 为1时会启用Multi-Scale Training,随机使用不同尺寸的图片进行训练,显存小可以置为0

该文件在/darknet/data目录下
- apple
- pear
- banana
该文件下记录所有类别名称
该文件在/darknet/cfg目录下
- classes= 3 //类别数量
- train = /home/embedded/lm/darknet/scripts/2007_train.txt //指定训练样本
- // valid = /home/pjreddie/data/voc/2007_test.txt 指定测试数据,训练用不到
- names = /home/embedded/lm/darknet/data/voc.names //指向上一步修改的voc.names文件
- backup = /home/embedded/lm/darknet/backup/yolov3_voc_weights //指定训练后的权值放在哪儿
不要与训练权重直接训练:
./darknet detector train cfg/voc.data cfg/yolov3_voc.cfg
也可以下载预训练权重进行训练:
./darknet detector train cfg/voc.data cfg/yolov3_voc.cfg yolo.weights
训练过程中可以随时停止,停止以后可以在保存的权重处接着开始训练,保存的权重就当做预训练权重,yolov3开始没训练100次保存一次权重,过1000以后每训练10000次保存一次权重。然后就等待漫长的训练过程……
原文地址水果识别-训练 | |www.linmao.dev
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。