当前位置:   article > 正文

动态规划part05 -- 子序列

动态规划part05 -- 子序列

LeetCode300. 最长递增子序列

题目链接:300. 最长递增子序列

class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        n = len(nums)

        dp = [1] * n

        for i in range(1, n):
            for j in range(i):
                if nums[i] > nums[j]:
                    dp[i] = max(dp[i], dp[j] + 1)

        return max(dp)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

LeetCode674. 最长连续递增序列

题目链接:674. 最长连续递增序列

class Solution:
    def findLengthOfLCIS(self, nums: List[int]) -> int:
        n = len(nums)

        dp = [1] * n

        for i in range(1, n):
            if nums[i] > nums[i-1]:
                dp[i] = dp[i-1] + 1

        return max(dp)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

LeetCode718. 最长重复子数组

题目链接:718. 最长重复子数组

# n*n数组
class Solution:
    def findLength(self, nums1: List[int], nums2: List[int]) -> int:
        length1 = len(nums1)
        length2 = len(nums2)
        result = 0

        dp = [[0 for _ in range(length1)] for _ in range(length2)]

        for i in range(length2):
            if nums2[i] == nums1[0]:
                dp[i][0] = 1
            result = max(result, dp[i][0])
        for i in range(length1):
            if nums1[i] == nums2[0]:
                dp[0][i] = 1
            result = max(result, dp[0][i])

        for i in range(1, length2):
            for j in range(1, length1):
                if nums2[i] == nums1[j]:
                    dp[i][j] = dp[i - 1][j - 1] + 1
                result = max(dp[i][j], result)

        return result
    
# (n+1)*(n+1)数组,可以省去初始化的步骤
class Solution:
    def findLength(self, nums1: List[int], nums2: List[int]) -> int:
        length1 = len(nums1)
        length2 = len(nums2)
        result = 0

        dp = [[0 for _ in range(length1 + 1)] for _ in range(length2 + 1)]

        for i in range(1, length2 + 1):
            for j in range(1, length1 + 1):
                if nums2[i-1] == nums1[j-1]:
                    dp[i][j] = dp[i - 1][j - 1] + 1
                result = max(dp[i][j], result)

        return result
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/爱喝兽奶帝天荒/article/detail/993297
推荐阅读
相关标签
  

闽ICP备14008679号