当前位置:   article > 正文

【LLM】大模型中的温度系数是啥玩意_llm temperature

llm temperature

一、LLM中的温度系数

  • temperature参数控制生成语言模型中生成文本的随机性和创造性,调整模型的softmax输出层中预测词的概率;
  • 其值越大,则预测词的概率的方差减小,即很多词被选择的可能性增大,利于文本多样化
  • 举例:Prompt: “The quick brown fox”
    • Temperature = 0.1:
      “The quick brown fox jumped over the lazy dog. The quick brown fox jumped over the lazy dog. The quick brown fox jumped over the lazy dog.
    • Temperature = 0.5:
      “The quick brown fox jumped over the lazy dog. The lazy cat was not impressed. The quick brown fox ran away.”
    • Temperature = 1.0:
      “The quick brown fox jumped over the lazy dog. Suddenly, a flock of birds flew overhead, causing the fox to stop in its tracks. It looked up at the sky, wondering where they were going.”

softmax计算的概率分布: p ( x i ) = e x i ∑ j = 1 V e x j p\left(x_i\right)=\frac{e^{x_i}}{\sum_{j=1}^V e^{x_j}} p(xi)=j=1Vexjexi
加入温度系数到softmax时: p ( x i ) = e x i T ∑ j = 1 V e x j T = 1 ∑ j = 1 V e x j − x i T p\left(x_i\right)=\dfrac{e^{\dfrac{x_i}{T}}}{\sum_{j=1}^V e^{\dfrac{x_j}{T}}} \\ =\frac{1}{\sum_{j=1}^V e^{\frac{x_{j}-x_i}{T}}} p(xi)=j=1VeTxjeTxi=j=1VeTxjxi1
简单分析:temperature从0到1的数值,当数值越大,将上式的分子分母同时除以分子,就可以发现temperture越大则总体值越大。

二、代码举例

import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt

criterion = nn.CrossEntropyLoss()
x = torch.Tensor([[1, 2, 3 ,4]])
y = torch.LongTensor([3])
# 折线图横坐标
x_ = [i for i in range(len(x.squeeze(0)))]
t = [1, 0.5, 0.1]
col = ['red', 'blue', 'green']

for i in range(len(t)):
    temp = t[i]
    out = F.softmax(x / temp, dim=1)
    loss = criterion(out, y)
    y_ = out.squeeze(0).tolist()
    plt.plot(x_, y_, color=col[i], linestyle='dashed', linewidth=2, \
             marker='o', markerfacecolor='red', markersize=8, label = "temp:" + str(temp))
    print("softmax概率值:", out, "\nloss:", loss, "\n")

# 图例放在右上角
plt.legend(loc = "upper left")
plt.title("diffterent temperature")
plt.xlabel("xlabel")
plt.ylabel("logits")
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

在这里插入图片描述
随着T的减少,softmax输出各类别的概率方差越大,而T越大则越相对平滑,印证了刚才的分析。

Reference

[1] 谈谈softmax中常出现的温度系数 T (τ)
[2] LLM Parameters Demystified: Getting The Best Outputs from Language AI

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/354171
推荐阅读
相关标签
  

闽ICP备14008679号