当前位置:   article > 正文

VGG实现CIFAR10(PYTORCH)_vgg8 model with cifar10 dataset ptyorch

vgg8 model with cifar10 dataset ptyorch

VGG实现CIFAR10(PYTORCH)

import torch
import torch.nn as nn
from torch import optim
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
from tqdm import tqdm

transform = transforms.Compose([
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor()
    ])

# 定义超参数
BATCH_SIZE = 128  # 批的大小
# CIFAR-10
train_dataset = datasets.CIFAR10('E:/Users/PycharmProjects/nlp/task/CIFAR10_try/CIFAR10', train=True, transform=transform, download=False)
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=0, pin_memory=True)
test_dataset = datasets.CIFAR10('E:/Users/PycharmProjects/nlp/task/CIFAR10_try/CIFAR10', train=False, transform=transform, download=False)
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=0, pin_memory=True)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

# 定义网络模型
class VGG16(nn.Module):
    def __init__(self, num_classes=1000):
        super(VGG16, self).__init__()
        self.features = nn.Sequential(
            # 1
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(True),
            # 2
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            # 3
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(True),
            # 4
            nn.Conv2d(128, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            # 5
            nn.Conv2d(128, 256, kernel_size=3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(True),
            # 6
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(True),
            # 7
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            # 8
            nn.Conv2d(256, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(True),
            # 9
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(True),
            # 10
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(True),
            nn.MaxPool2d(kernel_size=2, stride=2),
            # 11
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(True),
            # 12
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(True),
            # 13
            nn.Conv2d(512, 512, kernel_size=3, padding=1),
            # nn.BatchNorm2d(512),
            nn.ReLU(True),
            nn.MaxPool2d(kernel_size=2, stride=2),
        )
        self.classifier = nn.Sequential(
            # 14
            nn.Linear(512, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            # 15
            nn.Linear(4096, 4096),
            nn.ReLU(True),
            nn.Dropout(),
            # 16
            nn.Linear(4096, num_classes),
        )
        # self.classifier = nn.Linear(512, 10)

    def forward(self, x):
        out = self.features(x)
        out = out.view(out.size(0), -1)
        out = self.classifier(out)
        return out


# 创建模型
net = VGG16().to('cuda')
# 定义优化器和损失函数
criterion = nn.CrossEntropyLoss()  # 交叉式损失函数
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)  # 优化器


# 定义轮数
EPOCHS = 50

for epoch in range(EPOCHS):
    train_loss = 0.0
    for i, (datas, labels) in tqdm(enumerate(train_loader)):
        datas, labels = datas.to('cuda'), labels.to('cuda')
        # 梯度置零
        optimizer.zero_grad()
        # 训练
        outputs = net(datas)
        # 计算损失
        loss = criterion(outputs, labels)
        # 反向传播
        loss.backward()
        # 参数更新
        optimizer.step()
        # 累计损失
        train_loss += loss.item()
    print("Epoch : {} , Batch :{} , Loss : {:.3f}".format(epoch+1, i+1, train_loss/len(train_loader.dataset)))


# 保存模型
PATH = 'cifar_net.pth'
torch.save(net.state_dict(), PATH)

# 加载模型
model = net.to('cuda')
model.load_state_dict(torch.load(PATH))     # .load_state_dict() 加载模型

# 测试
correct = 0
total = 0
with torch.no_grad():
    for i, (datas, labels) in enumerate(test_loader):
        datas, labels = datas.to('cuda'), labels.to('cuda')
        # 输出
        outputs = model(datas)  # outputs.data.shape --> torch.Size([128, 10])
        _, predicted = torch.max(outputs.data, dim=1)   # 第一个是值的张量,第二个是序号的张量
        # 累计数据量
        total += labels.size(0)     # labels.size() --> torch.Size([128]), labels.size(0) --> 128
        # 比较有多少个预测正确
        correct += (predicted == labels).sum()  # 相同为1,不同为0,利用sum()求总和
    print('在10000张测试集图片上的准确率:{:.3f}'.format(correct / total * 100))

# 显示每一类预测的概率
class_correct = list(0. for i in range(10))
total = list(0. for i in range(10))
with torch.no_grad():
    for (images, labels) in test_loader:
        # 输出
        outputs = model(images)
        # 获取到每一行最大值的索引
        _, predicted = torch.max(outputs, dim=1)
        c = (predicted == labels).squeeze()     # squeeze() 去掉0维[默认], unsqueeze() 增加一维
        if labels.shape[0] == 128:
            for i in range(BATCH_SIZE):
                label = labels[i]   # 获取每一个label
                class_correct[label] += c[i].item()     # 累计True的个数,注意 1+True=2, 1+False=1
                total[label] += 1   # 该类总的个数

# 输出正确率
for i in range(10):
    print('正确率 : %5s : %2d %%' % (classes[i], 100 * class_correct[i] / total[i]))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/黑客灵魂/article/detail/957452
推荐阅读
相关标签
  

闽ICP备14008679号