当前位置:   article > 正文

13.hadoop系列之MapReduce排序实践_mapreduce降序输出

mapreduce降序输出

本文我们学习MapReduce的全排序、二次排序以及区内排序

1.MapReduce概述
  • MapTask和ReduceTask均会对数据按照key进行排序。该操作属于hadoop的默认行为。任何应用程序中的数据均会被排序,而不管逻辑上是否需要
  • 默认排序是按照字典顺序排序,通过快速排序实现
  • 对于MapTask,它会将处理结果暂时放到环形缓冲区中,当环形缓冲区使用率达到一定阈值后(默认80%),对缓冲区中的数据进行一次快速排序,并将这些有序数据溢写到磁盘上,而当数据处理完后,对磁盘上的所有文件进行归并排序
  • 对于ReduceTask,会从每个MapTask上远程拷贝相应数据文件,如果文件大小超过阈值,则溢写磁盘上,否则存储到内存中;如果磁盘上文件数据达到阈值,则进行归并排序生成更大文件,如果内存中文件大小或数据超过阈值,则合并后溢写到磁盘
  • 当所有数据拷贝完后,ReduceTask统一对内存和磁盘上的所有数据进行一次归并排序
2.全排序

最终输出结果只有一个,且文件内部有序。

// 我们主要实现WritableComparable接口重写compareTo方法即可
public class FlowBean implements WritableComparable<FlowBean> {

    private long upFlow; // 上行流量
    private long downFlow; // 下行流量
    private long totalFlow; // 总流量

    public FlowBean() {}

    @Override
    public void write(DataOutput out) throws IOException {
        out.writeLong(upFlow);
        out.writeLong(downFlow);
        out.writeLong(totalFlow);
    }

    @Override
    public void readFields(DataInput in) throws IOException {
        this.upFlow = in.readLong();
        this.downFlow = in.readLong();
        this.totalFlow = in.readLong();
    }

    @Override
    public String toString() {
        return "FlowBean{" +
                "upFlow=" + upFlow +
                ", downFlow=" + downFlow +
                ", totalFlow=" + totalFlow +
                '}';
    }

    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }

    public long getTotalFlow() {
        return totalFlow;
    }

    public void setTotalFlow() {
        this.totalFlow = this.upFlow + this.downFlow;
    }

    @Override
    public int compareTo(FlowBean o) {
        // 按照总流量倒序排序
        if (this.totalFlow > o.totalFlow) {
            return -1;
        }
        if (this.totalFlow < o.totalFlow) {
            return 1;
        }
        return 0;
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
// 注意我们将FlowBean作为键用于排序
public class FlowMapper extends Mapper<LongWritable, Text, FlowBean, Text> {

    private FlowBean keyOut = new FlowBean();
    private Text valueOut = new Text();

    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, FlowBean, Text>.Context context) throws IOException, InterruptedException {
        String line = value.toString();
        String[] split = line.split(" ");
        String phone = split[1];
        String up = split[3];
        String down = split[4];

        valueOut.set(phone);
        keyOut.setUpFlow(Long.parseLong(up));
        keyOut.setDownFlow(Long.parseLong(down));
        keyOut.setTotalFlow();

        context.write(keyOut, valueOut);
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
public class FlowReduce extends Reducer<FlowBean, Text, Text, FlowBean> {

    private FlowBean valueOut = new FlowBean();

    @Override
    protected void reduce(FlowBean key, Iterable<Text> values, Reducer<FlowBean, Text, Text, FlowBean>.Context context) throws IOException, InterruptedException {
        for (Text value : values) {
            context.write(value, key);
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
public class FlowDriver {

    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "flowSort");
        job.setJarByClass(FlowDriver.class);
        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReduce.class);
        job.setOutputKeyClass(FlowBean.class);
        job.setOutputValueClass(Text.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

观察输出结果,可以看到已按结果降序输出
在这里插入图片描述

3.二次排序

在自定义排序过程中,如果compareTo中判断条件为两个即为二次排序

public int compareTo(FlowBean o) {
        // 按照总流量倒序排序
        if (this.totalFlow > o.totalFlow) {
            return -1;
        }
        if (this.totalFlow < o.totalFlow) {
            return 1;
        }
        // 按照下行流量倒序排序
        if (this.downFlow > o.downFlow) {
            return -1;
        }
        if (this.downFlow < o.downFlow) {
            return 1;
        }
        return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

在这里插入图片描述

4.区内排序

MapReduce根据输入记录的键对数据集排序。保证输出的每个文件内部有序

// 注意FlowBean导入为排序的呢个类,最好新建包
public class ProvincePartitioner extends Partitioner<FlowBean, Text> {

    @Override
    public int getPartition(FlowBean flowBean, Text text, int numPartitions) {
        // Text是手机号
        String phone = text.toString().substring(0, 3);
        // 注意分区号需要连续,从0开始分区
        int partition;
        if ("136".equals(phone)) {
            partition = 0;
        } else if ("137".equals(phone)) {
            partition = 1;
        } else if ("138".equals(phone)) {
            partition = 2;
        } else if ("139".equals(phone)) {
            partition = 3;
        } else {
            partition = 4;
        }
        return partition;
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
public class FlowPartitionerDriver {

    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "flowPartitionerSort");
        job.setJarByClass(FlowPartitionerDriver.class);
        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReduce.class);
        job.setMapOutputKeyClass(FlowBean.class);
        job.setMapOutputValueClass(Text.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);
        // 关联自定义分区类
        job.setPartitionerClass(ProvincePartitioner.class);
        // 设置ReduceTask任务数,保持与分区数一致
        job.setNumReduceTasks(5);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

在这里插入图片描述
欢迎关注公众号算法小生与我沟通交流

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/酷酷是懒虫/article/detail/747976
推荐阅读
相关标签
  

闽ICP备14008679号