赞
踩
最近在研究OCR识别相关的东西,最终目标是能识别身份证上的所有中文汉字+数字,不过本文先设定一个小目标,先识别定长为18的身份证号,当然本文的思路也是可以复用来识别定长的验证码识别的。
本文实现思路主要来源于Xlvector的博客,采用基于CNN实现端到端的OCR,下面引用博文介绍目前基于深度学习的两种OCR识别方法:
- 把OCR的问题当做一个多标签学习的问题。4个数字组成的验证码就相当于有4个标签的图片识别问题(这里的标签还是有序的),用CNN来解决。
- 把OCR的问题当做一个语音识别的问题,语音识别是把连续的音频转化为文本,验证码识别就是把连续的图片转化为文本,用CNN+LSTM+CTC来解决。
这里方法1主要用来解决固定长度标签的图片识别问题,而方法2主要用来解决不定长度标签的图片识别问题,本文实现方法1识别固定18个数字字符的身份证号
pip install freetype-py
pip install numpy cv2
首先先完成训练数据集图片的生成,主要依赖于freetype-py库生成数字/中文的图片。其中要注意的一点是就是生成图片的大小,本文经过多次尝试后,生成的图片是32 x 256大小的,如果图片太大,则可能导致训练不收敛
生成出来的示例图片如下:
image.png
gen_image()方法返回
image_data:图片像素数据 (32,256)
label: 图片标签 18位数字字符 477081933151463759
vec : 图片标签转成向量表示 (180,) 代表每个数字所处的列,总长度 18 * 10
- #!/usr/bin/env python2
- # -*- coding: utf-8 -*-
- """
- 身份证文字+数字生成类
- @author: pengyuanjie
- """
- import numpy as np
- import freetype
- import copy
- import random
- import cv2
-
- class put_chinese_text(object):
- def __init__(self, ttf):
- self._face = freetype.Face(ttf)
-
- def draw_text(self, image, pos, text, text_size, text_color):
- '''
- draw chinese(or not) text with ttf
- :param image: image(numpy.ndarray) to draw text
- :param pos: where to draw text
- :param text: the context, for chinese should be unicode type
- :param text_size: text size
- :param text_color:text color
- :return: image
- '''
- self._face.set_char_size(text_size * 64)
- metrics = self._face.size
- ascender = metrics.ascender/64.0
-
- #descender = metrics.descender/64.0
- #height = metrics.height/64.0
- #linegap = height - ascender + descender
- ypos = int(ascender)
-
- if not isinstance(text, unicode):
- text = text.decode('utf-8')
- img = self.draw_string(image, pos[0], pos[1]+ypos, text, text_color)
- return img
-
- def draw_string(self, img, x_pos, y_pos, text, color):
- '''
- draw string
- :param x_pos: text x-postion on img
- :param y_pos: text y-postion on img
- :param text: text (unicode)
- :param color: text color
- :return: image
- '''
- prev_char = 0
- pen = freetype.Vector()
- pen.x = x_pos << 6 # div 64
- pen.y = y_pos << 6
-
- hscale = 1.0
- matrix = freetype.Matrix(int(hscale)*0x10000L, int(0.2*0x10000L),\
- int(0.0*0x10000L), int(1.1*0x10000L))
- cur_pen = freetype.Vector()
- pen_translate = freetype.Vector()
-
- image = copy.deepcopy(img)
- for cur_char in text:
- self._face.set_transform(matrix, pen_translate)
-
- self._face.load_char(cur_char)
- kerning = self._face.get_kerning(prev_char, cur_char)
- pen.x += kerning.x
- slot = self._face.glyph
- bitmap = slot.bitmap
-
- cur_pen.x = pen.x
- cur_pen.y = pen.y - slot.bitmap_top * 64
- self.draw_ft_bitmap(image, bitmap, cur_pen, color)
-
- pen.x += slot.advance.x
- prev_char = cur_char
-
- return image
-
- def draw_ft_bitmap(self, img, bitmap, pen, color):
- '''
- draw each char
- :param bitmap: bitmap
- :param pen: pen
- :param color: pen color e.g.(0,0,255) - red
- :return: image
- '''
- x_pos = pen.x >> 6
- y_pos = pen.y >> 6
- cols = bitmap.width
- rows = bitmap.rows
-
- glyph_pixels = bitmap.buffer
-
- for row in range(rows):
- for col in range(cols):
- if glyph_pixels[row*cols + col] != 0:
- img[y_pos + row][x_pos + col][0] = color[0]
- img[y_pos + row][x_pos + col][1] = color[1]
- img[y_pos + row][x_pos + col][2] = color[2]
-
-
- class gen_id_card(object):
- def __init__(self):
- #self.words = open('AllWords.txt', 'r').read().split(' ')
- self.number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
- self.char_set = self.number
- #self.char_set = self.words + self.number
- self.len = len(self.char_set)
-
- self.max_size = 18
- self.ft = put_chinese_text('fonts/OCR-B.ttf')
-
- #随机生成字串,长度固定
- #返回text,及对应的向量
- def random_text(self):
- text = ''
- vecs = np.zeros((self.max_size * self.len))
- #size = random.randint(1, self.max_size)
- size = self.max_size
- for i in range(size):
- c = random.choice(self.char_set)
- vec = self.char2vec(c)
- text = text + c
- vecs[i*self.len:(i+1)*self.len] = np.copy(vec)
- return text,vecs
-
- #根据生成的text,生成image,返回标签和图片元素数据
- def gen_image(self):
- text,vec = self.random_text()
- img = np.zeros([32,256,3])
- color_ = (255,255,255) # Write
- pos = (0, 0)
- text_size = 21
- image = self.ft.draw_text(img, pos, text, text_size, color_)
- #仅返回单通道值,颜色对于汉字识别没有什么意义
- return image[:,:,2],text,vec
-
- #单字转向量
- def char2vec(self, c):
- vec = np.zeros((self.len))
- for j in range(self.len):
- if self.char_set[j] == c:
- vec[j] = 1
- return vec
-
- #向量转文本
- def vec2text(self, vecs):
- text = ''
- v_len = len(vecs)
- for i in range(v_len):
- if(vecs[i] == 1):
- text = text + self.char_set[i % self.len]
- return text
-
- if __name__ == '__main__':
- genObj = gen_id_card()
- image_data,label,vec = genObj.gen_image()
- cv2.imshow('image', image_data)
- cv2.waitKey(0)

首先定义生成一个batch的方法:
- # 生成一个训练batch
- def get_next_batch(batch_size=128):
- obj = gen_id_card()
- batch_x = np.zeros([batch_size, IMAGE_HEIGHT*IMAGE_WIDTH])
- batch_y = np.zeros([batch_size, MAX_CAPTCHA*CHAR_SET_LEN])
-
-
- for i in range(batch_size):
- image, text, vec = obj.gen_image()
- batch_x[i,:] = image.reshape((IMAGE_HEIGHT*IMAGE_WIDTH))
- batch_y[i,:] = vec
- return batch_x, batch_y
用了Batch Normalization,个人还不是很理解,读者可自行百度,代码来源于参考博文
- #Batch Normalization? 有空再理解,tflearn or slim都有封装
- ## http://stackoverflow.com/a/34634291/2267819
- def batch_norm(x, beta, gamma, phase_train, scope='bn', decay=0.9, eps=1e-5):
- with tf.variable_scope(scope):
- #beta = tf.get_variable(name='beta', shape=[n_out], initializer=tf.constant_initializer(0.0), trainable=True)
- #gamma = tf.get_variable(name='gamma', shape=[n_out], initializer=tf.random_normal_initializer(1.0, stddev), trainable=True)
- batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], name='moments')
- ema = tf.train.ExponentialMovingAverage(decay=decay)
-
- def mean_var_with_update():
- ema_apply_op = ema.apply([batch_mean, batch_var])
- with tf.control_dependencies([ema_apply_op]):
- return tf.identity(batch_mean), tf.identity(batch_var)
-
- mean, var = tf.cond(phase_train, mean_var_with_update, lambda: (ema.average(batch_mean), ema.average(batch_var)))
- normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, eps)
- return normed

定义4层CNN和一层全连接层,卷积核分别是2层5x5、2层3x3,每层均使用tf.nn.relu非线性化,并使用max_pool,网络结构读者可自行调参优化
- # 定义CNN
- def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
- x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
-
- # 4 conv layer
- w_c1 = tf.Variable(w_alpha*tf.random_normal([5, 5, 1, 32]))
- b_c1 = tf.Variable(b_alpha*tf.random_normal([32]))
- conv1 = tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1)
- conv1 = batch_norm(conv1, tf.constant(0.0, shape=[32]), tf.random_normal(shape=[32], mean=1.0, stddev=0.02), train_phase, scope='bn_1')
- conv1 = tf.nn.relu(conv1)
- conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
- conv1 = tf.nn.dropout(conv1, keep_prob)
-
- w_c2 = tf.Variable(w_alpha*tf.random_normal([5, 5, 32, 64]))
- b_c2 = tf.Variable(b_alpha*tf.random_normal([64]))
- conv2 = tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2)
- conv2 = batch_norm(conv2, tf.constant(0.0, shape=[64]), tf.random_normal(shape=[64], mean=1.0, stddev=0.02), train_phase, scope='bn_2')
- conv2 = tf.nn.relu(conv2)
- conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
- conv2 = tf.nn.dropout(conv2, keep_prob)
-
- w_c3 = tf.Variable(w_alpha*tf.random_normal([3, 3, 64, 64]))
- b_c3 = tf.Variable(b_alpha*tf.random_normal([64]))
- conv3 = tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3)
- conv3 = batch_norm(conv3, tf.constant(0.0, shape=[64]), tf.random_normal(shape=[64], mean=1.0, stddev=0.02), train_phase, scope='bn_3')
- conv3 = tf.nn.relu(conv3)
- conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
- conv3 = tf.nn.dropout(conv3, keep_prob)
-
- w_c4 = tf.Variable(w_alpha*tf.random_normal([3, 3, 64, 64]))
- b_c4 = tf.Variable(b_alpha*tf.random_normal([64]))
- conv4 = tf.nn.bias_add(tf.nn.conv2d(conv3, w_c4, strides=[1, 1, 1, 1], padding='SAME'), b_c4)
- conv4 = batch_norm(conv4, tf.constant(0.0, shape=[64]), tf.random_normal(shape=[64], mean=1.0, stddev=0.02), train_phase, scope='bn_4')
- conv4 = tf.nn.relu(conv4)
- conv4 = tf.nn.max_pool(conv4, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
- conv4 = tf.nn.dropout(conv4, keep_prob)
-
- # Fully connected layer
- w_d = tf.Variable(w_alpha*tf.random_normal([2*16*64, 1024]))
- b_d = tf.Variable(b_alpha*tf.random_normal([1024]))
- dense = tf.reshape(conv4, [-1, w_d.get_shape().as_list()[0]])
- dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
- dense = tf.nn.dropout(dense, keep_prob)
-
- w_out = tf.Variable(w_alpha*tf.random_normal([1024, MAX_CAPTCHA*CHAR_SET_LEN]))
- b_out = tf.Variable(b_alpha*tf.random_normal([MAX_CAPTCHA*CHAR_SET_LEN]))
- out = tf.add(tf.matmul(dense, w_out), b_out)
- return out

最后执行训练,使用sigmoid分类,每100次计算一次准确率,如果准确率超过80%,则保存模型并结束训练
- # 训练
- def train_crack_captcha_cnn():
- output = crack_captcha_cnn()
- # loss
- #loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=Y))
- loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y))
- # 最后一层用来分类的softmax和sigmoid有什么不同?
- # optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰
- optimizer = tf.train.AdamOptimizer(learning_rate=0.002).minimize(loss)
-
- predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
- max_idx_p = tf.argmax(predict, 2)
- max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
- correct_pred = tf.equal(max_idx_p, max_idx_l)
- accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
-
- saver = tf.train.Saver()
- with tf.Session() as sess:
- sess.run(tf.global_variables_initializer())
-
- step = 0
- while True:
- batch_x, batch_y = get_next_batch(64)
- _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75, train_phase:True})
- print(step, loss_)
-
- # 每100 step计算一次准确率
- if step % 100 == 0 and step != 0:
- batch_x_test, batch_y_test = get_next_batch(100)
- acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1., train_phase:False})
- print "第%s步,训练准确率为:%s" % (step, acc)
- # 如果准确率大80%,保存模型,完成训练
- if acc > 0.8:
- saver.save(sess, "crack_capcha.model", global_step=step)
- break
- step += 1

执行结果,笔者在大概500次训练后,得到准确率84.3%的结果
image.png
大概训练1500~2200次左右,准确率就能达到98%,打印前5条测试样本可以看出,输出结果基本与label一致了
image.png
最后所有代码和字体资源文件托管在我的Github下
笔者在一开始训练的时候图片大小是64 x 512的,训练的时候发现训练速度很慢,而且训练的loss不收敛一直保持在0.33左右,缩小图片为32 x 256后解决,不知道为啥,猜测要么是网络层级不够,或者特征层数不够吧。
小目标完成后,为了最终目标的完成,后续可能尝试方法2,去识别不定长的中文字符图片,不过要先去理解LSTM网络和 CTC模型了。
TensorFlow练习20: 使用深度学习破解字符验证码
Python2.x上使用freetype实现OpenCV2.x的中文输出
端到端的OCR:基于CNN的实现
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。