赞
踩
前段时间写了一篇damoYolo的训练教程,同时也对自己的数据集进行了训练,虽然效果确实不是很好,但是damoyolo的一些思想和网络结构啥的还是可以借鉴使用的,此次将damoyolo的RepGFPN结构掏出来放到v5的NECK中,测试一下对本人的数据集(小目标)效果比v5要好,大概提升2个点左右。
放一下damoyolo的github网址:
https://github.com/tinyvision/DAMO-YOLO
damoyolo的整体结构我们是无法看到的因为他的主干网络是nas_backbones 里面是txt文件,RepGFPN是可以看到的。
- import torch
- import torch.nn as nn
-
- from ..core.ops import ConvBNAct, CSPStage
-
-
- class GiraffeNeckV2(nn.Module):
- def __init__(
- self,
- depth=1.0,
- hidden_ratio=1.0,
- in_features=[2, 3, 4],
- in_channels=[256, 512, 1024],
- out_channels=[256, 512, 1024],
- act='silu',
- spp=False,
- block_name='BasicBlock',
- ):
- super().__init__()
- self.in_features = in_features
- self.in_channels = in_channels
- self.out_channels = out_channels
- Conv = ConvBNAct
-
- self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
-
- # node x3: input x0, x1
- self.bu_conv13 = Conv(in_channels[1], in_channels[1], 3, 2, act=act)
- self.merge_3 = CSPStage(block_name,
- in_channels[1] + in_channels[2],
- hidden_ratio,
- in_channels[2],
- round(3 * depth),
- act=act,
- spp=spp)
-
- # node x4: input x1, x2, x3
- self.bu_conv24 = Conv(in_channels[0], in_channels[0], 3, 2, act=act)
- self.merge_4 = CSPStage(block_name,
- in_channels[0] + in_channels[1] +
- in_channels[2],
- hidden_ratio,
- in_channels[1],
- round(3 * depth),
- act=act,
- spp=spp)
-
- # node x5: input x2, x4
- self.merge_5 = CSPStage(block_name,
- in_channels[1] + in_channels[0],
- hidden_ratio,
- out_channels[0],
- round(3 * depth),
- act=act,
- spp=spp)
-
- # node x7: input x4, x5
- self.bu_conv57 = Conv(out_channels[0], out_channels[0], 3, 2, act=act)
- self.merge_7 = CSPStage(block_name,
- out_channels[0] + in_channels[1],
- hidden_ratio,
- out_channels[1],
- round(3 * depth),
- act=act,
- spp=spp)
-
- # node x6: input x3, x4, x7
- self.bu_conv46 = Conv(in_channels[1], in_channels[1], 3, 2, act=act)
- self.bu_conv76 = Conv(out_channels[1], out_channels[1], 3, 2, act=act)
- self.merge_6 = CSPStage(block_name,
- in_channels[1] + out_channels[1] +
- in_channels[2],
- hidden_ratio,
- out_channels[2],
- round(3 * depth),
- act=act,
- spp=spp)
-
- def init_weights(self):
- pass
-
- def forward(self, out_features):
- """
- Args:
- inputs: input images.
- Returns:
- Tuple[Tensor]: FPN feature.
- """
-
- # backbone
- [x2, x1, x0] = out_features
-
- # node x3
- x13 = self.bu_conv13(x1)
- x3 = torch.cat([x0, x13], 1)
- x3 = self.merge_3(x3)
-
- # node x4
- x34 = self.upsample(x3)
- x24 = self.bu_conv24(x2)
- x4 = torch.cat([x1, x24, x34], 1)
- x4 = self.merge_4(x4)
-
- # node x5
- x45 = self.upsample(x4)
- x5 = torch.cat([x2, x45], 1)
- x5 = self.merge_5(x5)
-
- # node x8
- # x8 = x5
-
- # node x7
- x57 = self.bu_conv57(x5)
- x7 = torch.cat([x4, x57], 1)
- x7 = self.merge_7(x7)
-
- # node x6
- x46 = self.bu_conv46(x4)
- x76 = self.bu_conv76(x7)
- x6 = torch.cat([x3, x46, x76], 1)
- x6 = self.merge_6(x6)
-
- outputs = (x5, x7, x6)
- return outputs
我根据ONNX结构图和上述代码画了简易的展示图:画的相对简单了,可能有些错误,后续我都没在看了,大家还是主要看代码吧
训练自己的数据集:
YoloV5+GFPN(我没用Rep)
yolov5:
map@0.5 相比之下提升了1.7个百分点。。。。还是阔以的
再看下参数量对比:(imgsize,map@50,mAP50-95,参数量(M),FLOPs)
对比之下参数量和FLOPs确实有增加,这种的增加不大,还是可以接受的,但同时map也相应地增加了。具体的话看大家自己抉择了。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。