赞
踩
给出一个长度为 n n n 的序列 a a a,选出其中连续且非空的一段使得这段和最大。
第一行是一个整数,表示序列的长度 n n n。
第二行有 n n n 个整数,第 i i i 个整数表示序列的第 i i i 个数字 a i a_i ai。
输出一行一个整数表示答案。
7
2 -4 3 -1 2 -4 3
4
选取 [ 3 , 5 ] [3, 5] [3,5] 子段 { 3 , − 1 , 2 } \{3, -1, 2\} {3,−1,2},其和为 4 4 4。
这是一道经典的动态规划,解决这个题首先要找到状态转移方程。
最大子段和,首先这个起始位置不能为负数,如果只有一个数,那么最大子段只能说负数,如果不是,且有正数存在的情况,那么起始值肯定不是负数,初始值我们让他等于第一个值。定义dp数组,记录的是当前位置子段最大和,那么这是什么意思呢,在第一个数输进来之后,第二个数输进来,我们就开始比较,如果前面dp加上当前输入这个数比当前单独这个数小的话,很明显,前面的数据我们不需要了,那么就是需要当前这个数,并且以他开始,所以我们此时的dp就是输入的数,后续的一直这样比较。
这个状态转移方成就是 d p [ i ] = m a x ( d p [ i − 1 ] + a [ i ] , a [ i ] ) dp[i] = max(dp[i-1]+a[i],a[i]) dp[i]=max(dp[i−1]+a[i],a[i])
在我们进行上述比较的同时,我们需要注意一点那就是dp[n]并不一定是最大值,下面我们看一个例子5 200 200 -888 1 1 ,如果我们直接输出dp[n]那么就是2,很明显最大值是dp[3] 是 405,所以我们再遍历时候,就需要考虑定义一个最大值max 即我下面代码里的res,初始值为-10000,因为题目里说明 − 1 0 4 ≤ a i ≤ 1 0 4 -10^4 \leq a_i \leq 10^4 −104≤ai≤104,那么他最小也只是-1000,设置为-10000的话,第一个数进来最大值就是第一个数。
#include <bits/stdc++.h> using namespace std; int n,res = -100000,dp[200001]={0},a[200001]; int main() { cin >> n; for(int i=1;i<=n;i++){ cin >> a[i]; dp[i] = max(dp[i-1]+a[i],a[i]); res = res>dp[i]?res:dp[i]; } cout << res; return 0; }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。