赞
踩
--------教程摘自b站【不愧是计算机博士唐宇迪128集课程一套搞定了我大学4年没学会的PyTorch】PyTorch从入门到实战全套课程(附带课程学习资料 )_哔哩哔哩_bilibili
- import torch
- import torch.nn as nn
- import torch.optim as optim
- import torch.nn.functional as F
- from torchvision import datasets,transforms
- import matplotlib.pyplot as plt
- import numpy as np
- %matplotlib inline
- # 定义超参数
- input_size = 28 #图像的总尺寸28*28*1
- num_classes = 10 #标签的种类数
- num_epochs = 3 #训练的总循环周期
- batch_size = 64 #一个撮(批次)的大小,64张图片
-
- # 训练集
- train_dataset = datasets.MNIST(root='./data',
- train=True,
- transform=transforms.ToTensor(),
- download=True)
-
- # 测试集
- test_dataset = datasets.MNIST(root='./data',
- train=False,
- transform=transforms.ToTensor())
-
- # 构建batch数据
- train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
- batch_size=batch_size,
- shuffle=True)
- test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
- batch_size=batch_size,
- shuffle=True)

- class CNN(nn.Module):
- def __init__(self):
- super(CNN, self).__init__()
- self.conv1 = nn.Sequential( # 输入大小 (1, 28, 28) conv1第一个卷积模块
- nn.Conv2d(
- in_channels=1, # 灰度图
- out_channels=16, # 要得到几多少个特征图
- kernel_size=5, # 卷积核大小
- stride=1, # 步长
- padding=2, # 如果希望卷积后大小跟原来一样,需要设置padding=(kernel_size-1)/2 if stride=1
- ), # 输出的特征图为 (16, 28, 28)
- nn.ReLU(), # relu层
- nn.MaxPool2d(kernel_size=2), # 进行池化操作(2x2 区域), 输出结果为: (16, 14, 14)
- )
- self.conv2 = nn.Sequential( # 下一个套餐的输入 (16, 14, 14)
- nn.Conv2d(16, 32, 5, 1, 2), # 输出 (32, 14, 14)
- nn.ReLU(), # relu层
- nn.MaxPool2d(2), # 输出 (32, 7, 7)
- )
- self.out = nn.Linear(32 * 7 * 7, 10) # 全连接层得到的结果
-
- def forward(self, x): #前向传播
- x = self.conv1(x)
- x = self.conv2(x)
- x = x.view(x.size(0), -1) # flatten操作,结果为:(batch_size, 32 * 7 * 7)
- output = self.out(x)
- return output

准确率作为评估标准
- def accuracy(predictions, labels):
- pred = torch.max(predictions.data, 1)[1] #torch.max(input,dim)的input是softmax函数输出的一个tensor(张量)
- dim是max函数索引的维度0/1,0是每列的最大值,1是每行的最大值
- 返回的是两个张量tensor,第一个tensor是每一行/列的最大值,第二个tensor是每一行/列的最大值的索引。在这返回的是每行最大值的索引
- rights = pred.eq(labels.data.view_as(pred)).sum() #view_as()返回被视作与给定的tensor相同大小的原tensor
- return rights, len(labels)
训练网络模型
- # 实例化
- net = CNN()
- #损失函数
- criterion = nn.CrossEntropyLoss()
- #优化器
- optimizer = optim.Adam(net.parameters(), lr=0.001) #定义优化器,普通的随机梯度下降算法
-
- #开始训练循环
- for epoch in range(num_epochs):
- #当前epoch的结果保存下来
- train_rights = []
-
- for batch_idx, (data, target) in enumerate(train_loader): #针对容器中的每一个批进行循环
- net.train()
- output = net(data)
- loss = criterion(output, target)
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
- right = accuracy(output, target)
- train_rights.append(right)
-
-
- if batch_idx % 100 == 0:
-
- net.eval()
- val_rights = []
-
- for (data, target) in test_loader:
- output = net(data)
- right = accuracy(output, target)
- val_rights.append(right)
-
- #准确率计算
- train_r = (sum([tup[0] for tup in train_rights]), sum([tup[1] for tup in train_rights]))
- val_r = (sum([tup[0] for tup in val_rights]), sum([tup[1] for tup in val_rights]))
-
- print('当前epoch: {} [{}/{} ({:.0f}%)]\t损失: {:.6f}\t训练集准确率: {:.2f}%\t测试集正确率: {:.2f}%'.format(
- epoch, batch_idx * batch_size, len(train_loader.dataset),
- 100. * batch_idx / len(train_loader),
- loss.data,
- 100. * train_r[0].numpy() / train_r[1],
- 100. * val_r[0].numpy() / val_r[1]))

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。