赞
踩
train,test = datasets.IMDB.splits(TEXT,LABEL)
@classmethod def splits(cls, text_field, label_field, root='.data', train='train', test='test', **kwargs): """Create dataset objects for splits of the IMDB dataset. Arguments: text_field: The field that will be used for the sentence. label_field: The field that will be used for label data. root: Root dataset storage directory. Default is '.data'. train: The directory that contains the training examples test: The directory that contains the test examples Remaining keyword arguments: Passed to the splits method of Dataset. """ return super(IMDB, cls).splits( root=root, text_field=text_field, label_field=label_field, train=train, validation=None, test=test, **kwargs)
We also include an additional 50,000 unlabeled documents for unsupervised learning.
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。