当前位置:   article > 正文

Pytorch卷积神经网络Mnist手写数字识别-GPU训练_train_dataset = datasets.mnist(root='./data', trai

train_dataset = datasets.mnist(root='./data', train=true, transform=transfor

导入工具包 

  1. import torch
  2. import torch.nn as nn
  3. import torch.optim as optim
  4. import torch.nn.functional as F
  5. from torchvision import datasets,transforms
  6. import matplotlib.pyplot as plt
  7. import numpy as np
  8. %matplotlib inline

 定义超参数

  1. # 定义超参数
  2. input_size = 28 #图像的总尺寸28*28
  3. classes = 10 #标签的种类数
  4. epochs = 10 #训练的总循环周期
  5. batch_size = 64 #一个撮(批次)的大小,64张图片
  6. learning_rate=0.001

 通过torchvision的dataset导入Mnist数据集

  1. # 训练集
  2. train_dataset = datasets.MNIST(root='./data',
  3. train=True,
  4. transform=transforms.ToTensor(),
  5. download=True)
  6. # 测试集
  7. test_dataset = datasets.MNIST(root='./data',
  8. train=False,
  9. transform=transforms.ToTensor())

 通过DataLoader实现构建batch数据,进一步简化了代码。(这样就不用写关于设置batch的循环了)

  1. # 构建batch数据
  2. train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
  3. batch_size=batch_size,
  4. shuffle=True)
  5. test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
  6. batch_size=batch_size,
  7. shuffle=True)

 构建CNN网络,卷积层-池化层-卷积层-池化层-全连接层

  1. class CNN(nn.Module):
  2. def __init__(self):
  3. super(CNN,self).__init__() #输入大小为(1,28,28)
  4. self.conv1=nn.Sequential(
  5. nn.Conv2d(
  6. in_channels=1, #灰度图,通道只有一个特征图
  7. out_channels=16, #输出16个特征图
  8. kernel_size=5, #卷积核大小为5*5
  9. stride=1, #步长为1
  10. padding=2, #填充2圈变为32*32
  11. ) , #输出为16*28*28
  12. nn.ReLU(), #ReLU层
  13. nn.MaxPool2d(kernel_size=2), #进行池化操作,2*2
  14. ) #输出为16*14*14
  15. self.conv2=nn.Sequential(
  16. nn.Conv2d(
  17. in_channels=16, #输入16*14*14
  18. out_channels=32, #输出32*14*14
  19. kernel_size=5,
  20. stride=1,
  21. padding=2,
  22. ) ,
  23. nn.ReLU(), #ReLU层
  24. nn.MaxPool2d(kernel_size=2), #输出(32,7,7)
  25. )
  26. self.out=nn.Linear(32*7*7,10) #全连接层输出结果
  27. def forward(self,x):
  28. x=self.conv1(x)
  29. x=self.conv2(x)
  30. x=x.view(x.size(0),-1)
  31. output=self.out(x)
  32. return output

 定义准确率计算函数

  1. def accuracy(predictions,labels):
  2. pred=torch.max(predictions.data,1)[1]
  3. rights=pred.eq(labels.data.view_as(pred)).sum()
  4. return rights,len(labels)

 网络实例化,设置优化器,损失函数,设定gpu训练(将模型,数据导入gpu即可)

  1. #实例化
  2. net=CNN()
  3. #损失函数
  4. criterion=nn.CrossEntropyLoss()
  5. #优化器
  6. optimizer=optim.Adam(net.parameters(),lr=learning_rate)
  7. device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
  8. net.to(device)

 训练模型并且打印输出 

  1. #开始训练循环
  2. for epoch in range(epochs):
  3. #保存当前epoch的结果
  4. train_rights=[]
  5. for batch_idx,(data,target) in enumerate(train_loader):
  6. data=data.to(device)
  7. target=target.to(device)
  8. net.train()
  9. output=net(data)
  10. loss=criterion(output,target)
  11. optimizer.zero_grad()
  12. loss.backward()
  13. optimizer.step()
  14. right=accuracy(output,target)
  15. train_rights.append(right)
  16. if batch_idx%100==0:
  17. net.eval()
  18. val_rights=[]
  19. for (data,target) in test_loader:
  20. data=data.to(device)
  21. target=target.to(device)
  22. output=net(data)
  23. right=accuracy(output,target)
  24. val_rights.append(right)
  25. #准确率计算
  26. train_r = (sum([tup[0] for tup in train_rights]), sum([tup[1] for tup in train_rights]))
  27. val_r = (sum([tup[0] for tup in val_rights]), sum([tup[1] for tup in val_rights]))
  28. print('当前epoch: {} [{}/{} ({:.0f}%)]\t损失: {:.6f}\t训练集准确率: {:.2f}%\t测试集正确率: {:.2f}%'.format(
  29. epoch+1, batch_idx * batch_size, len(train_loader.dataset),
  30. 100. * batch_idx / len(train_loader),
  31. loss.data,
  32. 100. * train_r[0].numpy() / train_r[1],
  33. 100. * val_r[0].numpy() / val_r[1]))

 

 打印最后得到的训练模型总的准确率

  1. train_rights=[]
  2. val_rights=[]
  3. for (data,target) in train_loader:
  4. data=data.to(device)
  5. target=target.to(device)
  6. train_output=net(data)
  7. right=accuracy(train_output,target)
  8. train_rights.append(right)
  9. for (data,target) in test_loader:
  10. data=data.to(device)
  11. target=target.to(device)
  12. test_output=net(data)
  13. right=accuracy(test_output,target)
  14. val_rights.append(right)
  15. #总准确率计算
  16. train_r = (sum([tup[0] for tup in train_rights]), sum([tup[1] for tup in train_rights]))
  17. val_r = (sum([tup[0] for tup in val_rights]), sum([tup[1] for tup in val_rights]))
  18. print('训练集总准确率: {:.2f}%\t测试集总准确率: {:.2f}%'.format(
  19. 100. * train_r[0].numpy() / train_r[1],
  20. 100. * val_r[0].numpy() / val_r[1]))

 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/339415?site
推荐阅读
相关标签
  

闽ICP备14008679号