赞
踩
1.需要说明输入、输出;
2.方法 (函数) 名可写可不写, 如果被别的方法调用就必须写;
3.需要写出主要步骤的注释;
4.长度控制在 15-30 行;
5.可使用数学式子或对已有数学式子的引用;
6.不重要的步骤可以省略;
7.一般需要进行时间、空间复杂度分析, 并写出配套的 property 以及相应的表格, 以使其更标准.
8.使用Latex编写算法伪代码
例子:
- \begin{algorithm}[!htb]
- \renewcommand{\algorithmicrequire}{\textbf{Input:}}
- \renewcommand{\algorithmicensure}{\textbf{Output:}}
- \caption{Multi-label active learning through serial-parallel neural networks}
- \label{algorithm: masp}
- \begin{algorithmic}[1]
- \REQUIRE
- data matrix $\mathbf{X}$,
- label matrix $\mathbf{Y}$ for query,
- query budget $Q$,
- cold-start query budget $P$,
- number of representative instances $R$,
- instance batch size $B_i$,
- label batch size $B_l$
- \ENSURE
- queried instance-label pairs $\mathbf{Q}$, prediction network $\Theta$.
- \STATE Initialize the serial-parallel prediction network;
- \STATE $\mathbf{Q} = \emptyset$;\\
- // Stage 1. Cold start.
- \STATE Compute instance representativeness according to Eq. \eqref{equation: dp-representativeness};
- \STATE Select the top-$R$ representative instances to reorganize the training set $\mathbf{X}$;
- \STATE Update $\mathbf{Q}$ and $\mathbf{Y}'$ by querying $B_l$ labels for each of the top $\lfloor Q / B_l \rfloor$ representative instances;
- \STATE Train the prediction network using $\mathbf{X}$ and $\mathbf{Y}'$;\\
- // Stage 2. Main learning process.
- \REPEAT
- \STATE Compute $\hat{\mathbf{Y}}$ using the prediction network and Eq. \eqref{equation: label-prediction};
- \STATE Compute label uncertainty according to Eq. \eqref{equation: label-uncertainty};
- \STATE Query top-$B_i$ uncertain instance-label pairs to update $\mathbf{Q}$ and $\mathbf{Y}'$;
- \STATE Update the prediction network using $\mathbf{X}$ and $\mathbf{Y}'$;\\
- \UNTIL{($|\mathbf{Q}| \geq Q$)}
- \end{algorithmic}
- \end{algorithm}

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。