赞
踩
参考该链接PyTorch pretrained BigGAN
convert_bert_original_tf_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert BERT checkpoint.""" import argparse import logging import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert logging.basicConfig(level=logging.INFO) def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path): # Initialise PyTorch model config = BertConfig.from_json_file(bert_config_file) print("Building PyTorch model from configuration: {}".format(str(config))) model = BertForPreTraining(config) # Load weights from tf checkpoint load_tf_weights_in_bert(model, config, tf_checkpoint_path) # Save pytorch-model print("Save PyTorch model to {}".format(pytorch_dump_path)) torch.save(model.state_dict(), pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
打开命令行,需要安装tensorflow、pytorch
我使用的是英文Bert cased_L-12_H-768_A-12
输入如下两行命令,在/home/username/桌面/词向量/cased_L-12_H-768_A-12文件夹下生成pytorch_model.bin
$ export BERT_BASE_DIR=/home/username/桌面/词向量/cased_L-12_H-768_A-12
$ python convert_bert_original_tf_checkpoint_to_pytorch.py --tf_checkpoint_path $BERT_BASE_DIR/bert_model.ckpt --bert_config_file $BERT_BASE_DIR/bert_config.json --pytorch_dump_path $BERT_BASE_DIR/pytorch_model.bin
安装成功图片
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。