当前位置:   article > 正文

Linux工具入门:make工具与Makefile文件

deepin makefile

1. make工具

利用make工具可以自动完成编译工作,这些工作包括:

  • 如果修改了某几个源文件,则只重新编译这几个源文件
  • 如果某个头文件被修改了,则重新编译所有包含该头文件的源文件

利用这种自动编译可以大大简化开发工作,避免不必要的重新编译。make工具通过一个称为Makefile的文件来完成并自动维护编译工作,Makefile文件描述了整个工程的编译、连接规则。

2. Makefile文件

Makefile描述了整个工程的编译连接规则。Makefile的基本规则为:

  1. TARGET...: DEPENDENCIES...
  2. COMMAND
  3. ...
  • TARGER:目标程序产生的文件,如可执行文件和目标文件,目标也可以是要执行的动作,如clean,也称为伪目标。
  • DEPENDENCIES:依赖是用来产生目标的输入文件列表,一个目标通常依赖与多个文件。
  • COMMAND:命令是make执行的动作(命令是shell命令或是可在shell下执行的程序),注意每个命令行的起始字符必须为TAB字符。
  • 如果DEPENDENCIES中有一个或多个文件更新的话,COMMAND就要执行,这就是Makefile最核心的内容。

3. Makefile的简单示例

$ touch add.c add.h sub.c sub.h main.c

现在有这5个文件add.h 、sub.h中包含了函数声明,add.c、sub.c中包含了函数实现,main.c调用了函数。Makefile的文件:

  1. main:main.o add.o sub.o 【目标文件是main,它依赖于main.o,add.o,sub.o这三个文件】
  2. gcc -Wall -g main.o add.o sub.o -o main 【由依赖文件生成目标文件应该执行的命令】
  3. main.o:main.c
  4. gcc -Wall -g -c main.c -o main.o
  5. add.o:add.c add.h
  6. gcc -Wall -g -c add.c -o add.o
  7. sub.o:sub.c sub.h
  8. gcc -Wall -g -c sub.c -o sub.o

保存Makefile文件后执行make命令:

  1. $ make
  2. gcc -Wall -g -c main.c -o main.o
  3. gcc -Wall -g -c add.c -o add.o
  4. gcc -Wall -g -c sub.c -o sub.o
  5. gcc -Wall -g main.o add.o sub.o -o main

可以看到执行了make之后,由于 目标文件main依赖于 main.o add.o sub.o ,所以是需要先 生成 这三个.o文件,最后才生成main。
如果此时再次输入make,会看到:

  1. $ make
  2. make: 'main' is up to date.

make的编译规则是根据时间来进行判断,一旦依赖列表中某个文件的更新时间比目标文件晚,则会重新生成目标,否则会出现以上提示。
默认情况下敲击make将生成第一个目标,也就是main。也可以生成指定的目标:

$ make add.o   【指定只生成add.o文件】

Makefile文件的名字不一定得命名为“Makefile”或"makefile",使用其他名字也是可以的。例如我们由一个文件叫myMakefile,同样可以使用它:

make -f myMakefile   【-f 选项的作用是把名字"myMakefile"作为makefile来对待。】

4. 伪目标

  1. TARGET...: DEPENDENCIES...
  2. COMMAND 【注意COMMAND之前是一个TAB,不是空格】
  3. ...

前面说过,TARGET除了可以是目标文件之外,还可以是伪目标。执行伪目标的效果等于执行了某一个动作, 并不产生目标文件。例如添加一个伪目标:

  1. main:main.o add.o sub.o
  2. gcc -Wall -g main.o add.o sub.o -o main
  3. main.o:main.c
  4. gcc -Wall -g -c main.c -o main.o
  5. add.o:add.c add.h
  6. gcc -Wall -g -c add.c -o add.o
  7. sub.o:sub.c sub.h
  8. gcc -Wall -g -c sub.c -o sub.o
  9. clean : 【这是一个伪目标】
  10. rm -f $(OBJECTS) main

使用make来执行伪目标:

  1. $ make clean
  2. rm -f main.o add.o sub.o main

可以看到make将执行伪目标下面的命令。

5. Makefile 自动化变量

从上面的Makefile文件我们发现一些问题:有时候目标文件的依赖列表过长,或者命令重复书写。利用Makefile自动化变量可以解决这个问题。

选项名作用
@|||<规则的第一个依赖文件名
$^规则的所有依赖文件列表

刚才的Makefile文件,我们可以改写为:

  1. main:main.o add.o sub.o
  2. gcc -Wall -g $^ -o $@ 【等价于 gcc -Wall -g main.o add.o sub.o -o main】
  3. main.o:main.c
  4. gcc -Wall -g -c $< -o $@
  5. add.o:add.c add.h
  6. gcc -Wall -g -c $< -o $@
  7. sub.o:sub.c sub.h
  8. gcc -Wall -g -c $< -o $@

执行make,可以看到效果和之前是一样的:

  1. $ make
  2. gcc -Wall -g -c main.c -o main.o
  3. gcc -Wall -g -c add.c -o add.o
  4. gcc -Wall -g -c sub.c -o sub.o
  5. gcc -Wall -g main.o add.o sub.o -o main

还可以自定义变量

  1. OBJECTS = main.o add .o sub.o 【OBJECTS是自定义的变量名】
  2. main:$(OBJECTS) 【可以在需要的地方使用变量名进行替换,替换规则为$(变量名)】
  3. gcc -Wall -g $^ -o $@
  4. main.o:main.c
  5. gcc -Wall -g -c $< -o $@
  6. add.o:add.c add.h
  7. gcc -Wall -g -c $< -o $@
  8. sub.o:sub.c sub.h
  9. gcc -Wall -g -c $< -o $@

6. 编译生成多个可执行文件

假设现在不只是想生成可执行main,还想生成可执行文件main2,可以这样写

  1. BIN = main main2 【自定义变量BIN
  2. OBJECTS= main.o add.o sub.o
  3. all : $(BIN) 【关注重点】
  4. main : $(OBJECTS)
  5. gcc -Wall -g $< -o $@
  6. main2: $(OBJECTS)
  7. gcc -Wall -g $< -o $@
  8. main.o : main.c
  9. gcc -Wall -g -c $< -o $@
  10. main2.o :msin2.c
  11. gcc -Wall -g -c $< -o $@
  12. add.o:add.c add.h
  13. gcc -Wall -g -c $< -o $@
  14. sub.o:sub.c sub.h
  15. gcc -Wall -g -c $< -o $@
  16. clean :
  17. rm -f $(OBJECTS) $(BIN)

为了生成目标文件all,需要先生成BIN,也即是 main main2。这样就可以生成两个可执行文件了。利用自定义变量可以再简化这段Makefile文件:

  1. BIN = main main2
  2. OBJECTS= main.o add.o sub.o
  3. CC = gcc
  4. CFALGS = -Wall -g
  5. all : $(BIN)
  6. main : $(OBJECTS)
  7. $(CC) $(CFALGS) $< -o $@
  8. main2: $(OBJECTS)
  9. $(CC) $(CFALGS) $< -o $@
  10. main.o : main.c
  11. $(CC) $(CFALGS) -c $< -o $@
  12. main2.o :msin2.c
  13. $(CC) $(CFALGS) -c $< -o $@
  14. add.o:add.c add.h
  15. $(CC) $(CFALGS) -c $< -o $@
  16. sub.o:sub.c sub.h
  17. $(CC) $(CFALGS) -c $< -o $@
  18. clean :
  19. rm -f $(OBJECTS) $(BIN)

但是这样看起来,重复的内容还是比较多,可以使用下面的方法来继续简化:

  1. BIN = main main2
  2. OBJECTS= main.o add.o sub.o
  3. CC = gcc
  4. CFALGS = -Wall -g
  5. all : $(BIN)
  6. main : $(OBJECTS)
  7. $(CC) $(CFALGS) $< -o $@
  8. main2: $(OBJECTS)
  9. $(CC) $(CFALGS) $< -o $@
  10. .o .c : 【关注重点在这里】
  11. $(CC) $(CFALGS) -c $< -o $@
  12. clean :
  13. rm -f $(OBJECTS) $(BIN)

利用 .o.c :,可以自动地把所有的.c文件到.o文件的生成都使用同一条命令来完成,简化的重复的工作。

7. make常用的内嵌函数

首先看make中函数调用的形式:

  1. //函数调用
  2. $(function arguments) 【function是函数名称,arguments是参数,使用$来调用】

值得注意的是,函数名称与参数之间是空格。

来看三个常用make内嵌函数。

  • $(wildcard PATTERN) 作用是在当前目录下匹配模式的文件。
src = $(wildcard *.c)  【在当前目录下搜索所有.c文件,文件名称列表保存到src中】
  • $(patsubst PATTENR,REPLACEMENT,TEXT) 模式替换函数,作用是把TEXT中文件列表从模式PATTENR替换为REPLACEMENT模式。
  1. $(patsubst %.c,%.o,$src) 【把src中的.c文件列表中的文件从.c替换为.o】
  2. 等价于:
  3. $(src:.c =.o) 【这种方式更常用】
  • shell函数

shell函数可以执行shell下的命令,同样是使用$来引用,例如

$(shell ls -d */) 【将当前目录下的所有文件夹都列出来】

下面通过一个多级目录的例子来使用这些函数。场景是这样的,当前目录下有main.c文件,同时还有若干个目录,每个目录中都有各自的.c文件。利用所有的.c文件编译生成最后的main文件:

  1. CC = gcc
  2. CFLAGS = -Wall -g
  3. BIN = main
  4. SUBDIR = $(shell ls -d */) 【SUBDIR变量保存了子目录的列表】
  5. ROOTSRC = $(wildcard *.c) 【ROOTSRC保存了当前目录下的.c文件列表】
  6. ROOTOBJ = $(ROOTSRC:%.c = %.o) 【ROOTBOJ 保存了当前目录下.c文件同名的.o列表】
  7. SUBSRC = $(shell find $(SUBDIR) -name '*.c') 【SUBSRC 保存了所有子目录下的的.c文件】
  8. SUBOBJ = $(SUBSRC:%.c = %.o)  【SUBOBJ保存了所有子目录下的.c文件同名的.o文件列表】
  9. $(BIN):$(ROOTOBJ) $(SUBOBJ) 【main的生成依赖与当前目录及所有子目录下的.o文件】
  10. $(CC) $(CFLAGS) -o $(BIN) $(ROOTOBJ) $(SUBOBJ)
  11. .o .c:
  12. $(CC) $(CFLAGS) -c $< -o $@
  13. clean:
  14. rm -f $(BIN) $(ROOTOBJ) $(SUBOBJ)

文章链接:http://www.cnblogs.com/QG-whz/p/5461110.html

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/天景科技苑/article/detail/965471
推荐阅读
相关标签
  

闽ICP备14008679号