当前位置:   article > 正文

决策树 (Decision Tree) 原理简述及相关算法(ID3,C4.5)_决策树算法有哪些

决策树算法有哪些

Decision Tree 决策树:

决策树是属于机器学习监督学习分类算法中比较简单的一种,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。 
下面来看个范例,就能很快理解了。

范例:

假设,我们有以下数据,表示当天是否回去玩高尔夫:

用决策树建立起来后,能得到这样的模型:

至此可以看出,说白了,决策树就是If()语句的层层嵌套,知道最后能总结出点什么。(原谅我实在不会描述点什么,不过看了这图应该对
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/在线问答5/article/detail/847545
推荐阅读
相关标签
  

闽ICP备14008679号