当前位置:   article > 正文

pytorch迁移学习训练图像分类_pytorch图像训练

pytorch图像训练

代码和图片等资源均来源于哔哩哔哩up主:同济子豪兄
讲解视频:Pytorch迁移学习训练自己的图像分类模型

一、环境配置

1,安装所需的包

pip install numpy pandas matplotlib seaborn plotly requests tqdm opencv-python pillow wandb -i https://pypi.tuna.tsinghua.edu.cn/simple
  • 1

2,安装Pytorch

pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
  • 1

3,创建目录

import os
# 存放训练得到的模型权重
os.mkdir('checkpoint')
  • 1
  • 2
  • 3
'
运行

4,下载数据集压缩包(下载之后需要解压数据集)

wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/dataset/fruit30/fruit30_split.zip
  • 1

二、迁移学习关键代码

以下是迁移学习的三种选择,根据训练的需求选择不同的迁移方法:

  • 选择一:只微调训练模型最后一层(全连接分类层)
model = models.resnet18(pretrained=True) # 载入预训练模型
# 修改全连接层,使得全连接层的输出与 当前数据集类别数n_class 对应
model.fc = nn.Linear(model.fc.in_features, n_class)
# 只微调训练最后一层全连接层的参数,其它层冻结
optimizer = optim.Adam(model.fc.parameters())
  • 1
  • 2
  • 3
  • 4
  • 5
  • 选择二:微调训练所有层。

适用于训练数据集与预训练模型相差大时,可以选择微调训练所有层,此时只使用预训练模型的部分权重和特征,例如原始模型为imageNet,而训练数据为医疗相关

model = models.resnet18(pretrained=True) # 载入预训练模型
model.fc = nn.Linear(model.fc.in_features, n_class)
optimizer = optim.Adam(model.parameters())
  • 1
  • 2
  • 3
  • 选择三:随机初始化模型全部权重,从头训练所有层
model = models.resnet18(pretrained=False) # 只载入模型结构,不载入预训练权重参数
model.fc = nn.Linear(model.fc.in_features, n_class)
optimizer = optim.Adam(model.parameters())
  • 1
  • 2
  • 3

三、完整代码

import time
import os

import numpy as np
from tqdm import tqdm

import torch
import torchvision
import torch.nn as nn

# 忽略出现的红色提示
import warnings
warnings.filterwarnings("ignore")

# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('device', device)

from torchvision import transforms

# 训练集图像预处理:缩放裁剪、图像增强、转 Tensor、归一化
train_transform = transforms.Compose([transforms.RandomResizedCrop(224),
                                      transforms.RandomHorizontalFlip(),
                                      transforms.ToTensor(),
                                      transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
                                     ])

# 测试集图像预处理-RCTN:缩放、裁剪、转 Tensor、归一化
test_transform = transforms.Compose([transforms.Resize(256),
                                     transforms.CenterCrop(224),
                                     transforms.ToTensor(),
                                     transforms.Normalize(
                                         mean=[0.485, 0.456, 0.406], 
                                         std=[0.229, 0.224, 0.225])
                                    ])

# 数据集文件夹路径
dataset_dir = 'fruit30_split'
train_path = os.path.join(dataset_dir, 'train')	# 测试集路径
test_path = os.path.join(dataset_dir, 'val')	# 测试集路径

from torchvision import datasets

# 载入训练集
train_dataset = datasets.ImageFolder(train_path, train_transform)

# 载入测试集
test_dataset = datasets.ImageFolder(test_path, test_transform)

# 各类别名称
class_names = train_dataset.classes
n_class = len(class_names)

# 定义数据加载器DataLoader
from torch.utils.data import DataLoader

BATCH_SIZE = 32

# 训练集的数据加载器
train_loader = DataLoader(train_dataset,
                          batch_size=BATCH_SIZE,
                          shuffle=True,
                          num_workers=4
                         )

# 测试集的数据加载器
test_loader = DataLoader(test_dataset,
                         batch_size=BATCH_SIZE,
                         shuffle=False,
                         num_workers=4
                        )

from torchvision import models
import torch.optim as optim

# 选择一:只微调训练模型最后一层(全连接分类层)
model = models.resnet18(pretrained=True) # 载入预训练模型
# 修改全连接层,使得全连接层的输出与当前数据集类别数对应
# 新建的层默认 requires_grad=True,指定张量需要梯度计算
model.fc = nn.Linear(model.fc.in_features, n_class)
model.fc	# 查看全连接层
# 只微调训练最后一层全连接层的参数,其它层冻结
optimizer = optim.Adam(model.fc.parameters())    # optim 是 PyTorch 的一个优化器模块,用于实现各种梯度下降算法的优化方法


# 选择二:微调训练所有层
# 训练数据集与预训练模型相差大时,可以选择微调训练所有层,只使用预训练模型的部分权重和特征,例如原始模型为imageNet,训练数据为医疗相关
# model = models.resnet18(pretrained=True) # 载入预训练模型
# model.fc = nn.Linear(model.fc.in_features, n_class)
# optimizer = optim.Adam(model.parameters())


# 选择三:随机初始化模型全部权重,从头训练所有层
# model = models.resnet18(pretrained=False) # 只载入模型结构,不载入预训练权重参数
# model.fc = nn.Linear(model.fc.in_features, n_class)
# optimizer = optim.Adam(model.parameters())

# 训练配置
model = model.to(device)

# 交叉熵损失函数
criterion = nn.CrossEntropyLoss()

# 训练轮次 Epoch
EPOCHS = 30

# 遍历每个 EPOCH
for epoch in tqdm(range(EPOCHS)):

    model.train()

    for images, labels in train_loader:  # 获取训练集的一个 batch,包含数据和标注
        images = images.to(device)
        labels = labels.to(device)

        outputs = model(images)           # 前向预测,获得当前 batch 的预测结果
        loss = criterion(outputs, labels) # 比较预测结果和标注,计算当前 batch 的交叉熵损失函数
        
        optimizer.zero_grad()
        loss.backward()                   # 损失函数对神经网络权重反向传播求梯度
        optimizer.step()                  # 优化更新神经网络权重

# 测试集上初步测试
model.eval()
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in tqdm(test_loader): # 获取测试集的一个 batch,包含数据和标注
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)              # 前向预测,获得当前 batch 的预测置信度
        _, preds = torch.max(outputs, 1)     # 获得最大置信度对应的类别,作为预测结果
        total += labels.size(0)
        correct += (preds == labels).sum()   # 预测正确样本个数

    print('测试集上的准确率为 {:.3f} %'.format(100 * correct / total))

# 保存模型
torch.save(model, 'checkpoint/fruit30_pytorch_A1.pth') # 选择一:微调全连接层
# torch.save(model, 'checkpoint/fruit30_pytorch_A2.pth') # 选择二:微调所有层
# torch.save(model, 'checkpoint/fruit30_pytorch_A3.pth') # 选择三:随机权重
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141

四、结果对比

调用不同迁移学习得到的模型对比测试集准确率

# 测试集导入和图像预处理等代码和上述完整代码中一致,此处省略……

# 调用自己训练的模型
model = torch.load('checkpoint/fruit30_pytorch_A1.pth')

# 测试集上进行测试
model.eval()
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in tqdm(test_loader): # 获取测试集的一个 batch,包含数据和标注
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)              # 前向预测,获得当前 batch 的预测置信度
        _, preds = torch.max(outputs, 1)     # 获得最大置信度对应的类别,作为预测结果
        total += labels.size(0)
        correct += (preds == labels).sum()   # 预测正确样本个数

    print('测试集上的准确率为 {:.3f} %'.format(100 * correct / total))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

结果如下:
对于微调全连接层的选择一,测试集准确率为 72.078%
在这里插入图片描述
而所有权重随机的选择三测试集准确率为 43.228%
43.228

总体而言,迁移学习能够利用已有的知识和经验,加速模型的训练过程,提高模型的性能。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/喵喵爱编程/article/detail/923432
推荐阅读
相关标签
  

闽ICP备14008679号