赞
踩
完整工程链接: link.
通过使用单层的Bi-LSTM来实现股票收盘价的预测,数据集采用的是平安银行的数据
下面展示一些 model代码。
import torch from torch import nn time_step = 20 input_size = 10 learning_rate = 0.001 hidden_size = 64 num_layers = 1 end_lenth=6500 class Bi_LSTM(nn.Module): """搭建LSTM""" def __init__(self): super(Bi_LSTM, self).__init__() # LSTM层 self.lstm = nn.LSTM(input_size=input_size, # 输入单元个数 hidden_size=hidden_size, # 隐藏单元个数 num_layers=num_layers, # 隐藏层数 batch_first=True, # True:[batch, time_step, input_size] False:[time_step, batch, input_size] bidirectional=True) # 输出层 self.output_layers = nn.Linear(in_features=hidden_size*2, # 输入特征个数 out_features=1) # 输出特征个数 def forward(self, x): lstm_out, (h_n, h_c) = self.lstm(x, None) # # print(lstm_out.shape) output = self.output_layers(lstm_out[:, -1, :]) # 选择最后一个时刻的LSTM作为输出 return output # lstm=Bi_LSTM()
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。