赞
踩
- set.seed(1010)
- N <- 100
- x1 <- rnorm(N)
- x2 <- runif(N)
- err <- rnorm(N)
- lambda <- exp(1+2*x1+3*x2+err)
- y <- rpois(N,lambda)
- sim.data <- data.frame(x1,x2,y)
调用”MASS”包里的glm.nb()进行拟合负二项回归(可以估计负二项参数ψ和回归参数βj)
- library(MASS)
- model <- glm.nb(y~.,data=sim.data)
- summary(model)
除回归系数外,也可以单独输出负二项回归的参数ψ如下:
为了对比我们可以拟合一般的泊松回归模型与准泊松回归模型,比较其系数如下:
- model1 <- glm(y~.,data=sim.data,family = "poisson")
- model2 <- glm(y~.,data=sim.data,family = "quasipoisson")
- coef.matrix <- rbind(coef(model),coef(model1),coef(model2))
- rownames(coef.matrix) <- c("NB","Poisson","Quasi-poisson")
- coef.matrix
- se.mat <- rbind(coef(summary(model))[,"Std. Error"],coef(summary(model1))[,"Std. Error"],coef(summary(model2))[,"Std. Error"])
- rownames(se.mat) <- c("NB","Poisson","Quasi-poisson")
- se.mat
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。