赞
踩
导语
自然场景文本识别是计算机视觉领域的一个经典问题,并被广泛使用于无人驾驶、视觉识别等领域。不同于电脑中的文本识别,自然场景中所采集的文本,往往包含着大量低质量的图像,这对于目前的文本识别器来说是一个相当棘手的问题。为此,ImageDT图匠数据联合华中师范大学提出,“PlugNet:一种基于可插拔的超分辨学习单元的文本识别方法”( PlugNet: Degradation Aware Scene Text Recognition Supervised by a Pluggable Super-Resolution Unit),显著提升了通用文本识别方法在低质量文本上的识别效果,并在更加广泛的通用文本基线数据集中取得了目前最佳的性能。目前,这项研究工作已经被欧洲计算机视觉大会(ECCV2020)收录。
(图1,研究背景)
如图1所示,此前,解决模糊问题往往需要依赖于串联一个大型的超分辨网络来进行图像级的超分辨学习,以此改善输入图像的质量。这种方案往往需要依赖有力的数据集划分以及大量的计算资源,在实际应
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。