当前位置:   article > 正文

文本特征提取_ImageDT图匠数据联合华中师范提出低质退化文本识别算法PlugNet,论文被计算机视觉三大顶级会议之一的ECCV2020接收...

plugnet: degradation aware scene text recognition supervised by a pluggable

e8b4ec60bcebb14c279688052d77e4d1.gif

导语

自然场景文本识别是计算机视觉领域的一个经典问题,并被广泛使用于无人驾驶、视觉识别等领域。不同于电脑中的文本识别,自然场景中所采集的文本,往往包含着大量低质量的图像,这对于目前的文本识别器来说是一个相当棘手的问题。为此,ImageDT图匠数据联合华中师范大学提出,“PlugNet:一种基于可插拔的超分辨学习单元的文本识别方法”( PlugNet: Degradation Aware Scene Text Recognition Supervised by a Pluggable Super-Resolution Unit),显著提升了通用文本识别方法在低质量文本上的识别效果,并在更加广泛的通用文本基线数据集中取得了目前最佳的性能。目前,这项研究工作已经被欧洲计算机视觉大会(ECCV2020)收录。

567cd1c3db7b440cb31f3b80b478fdb0.png

(图1,研究背景)

如图1所示,此前,解决模糊问题往往需要依赖于串联一个大型的超分辨网络来进行图像级的超分辨学习,以此改善输入图像的质量。这种方案往往需要依赖有力的数据集划分以及大量的计算资源,在实际应

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/708107
推荐阅读
相关标签
  

闽ICP备14008679号