赞
踩
运行界面
一、下载模型
注意是下载的是stable-diffusion-3-medium-diffusers
git clone https://www.modelscope.cn/AI-ModelScope/stable-diffusion-3-medium-diffusers.git
二、搭建基础环境
- conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
-
- # 或者pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
-
- pip install gradio
-
- pip install spaces
三、安装SD3的环境
由于pip环境的diffusers和transformers还不支持SD3,所以需要编译安装
- git clone https://github.com/huggingface/diffusers.git
- git clone https://github.com/huggingface/transformers
-
- cd diffusers/
- python setup.py develop
- pip install -e .
-
- cd ../transformers
- python setup.py develop
- pip install -e .
三、运行SD3 DEMO
将下面的代码保存为demo.py,再直接python demo.py即可
翻译用到了百度的接口,可以换成自己的AK/SK,不喜欢可以去掉
- import gradio as gr
- import numpy as np
- import random
- import torch
- from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler
- import spaces
- import requests
- import hashlib
- import random
- import json
-
- device = "cuda" if torch.cuda.is_available() else "cpu"
- dtype = torch.float16
-
- repo = "/你的模型路径/stable-diffusion-3-medium-diffusers"
- pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16).to(device)
-
- MAX_SEED = np.iinfo(np.int32).max
- MAX_IMAGE_SIZE = 1344
-
- def translate_baidu(query, from_lang='auto', to_lang='en'):
- base_url = "https://fanyi-api.baidu.com/api/trans/vip/translate"
- appid = '你的APPID'
- secret_key = '你的SK'
- salt = str(random.randint(32768, 65536))
- sign = appid + query + salt + secret_key
- sign = hashlib.md5(sign.encode()).hexdigest()
-
- params = {
- 'q': query,
- 'from': from_lang,
- 'to': to_lang,
- 'appid': appid,
- 'salt': salt,
- 'sign': sign
- }
-
- response = requests.get(base_url, params=params)
- if response.status_code == 200:
- result = response.json()
- if "trans_result" in result:
- return result["trans_result"][0]["dst"]
- else:
- return result
- else:
- return f"Error: {response.status_code}"
-
- @spaces.GPU
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
-
- if randomize_seed:
- seed = random.randint(0, MAX_SEED)
-
- generator = torch.Generator().manual_seed(seed)
-
- print(prompt)
- prompt = translate_baidu(prompt, 'zh', 'en')
- print(prompt)
-
- image = pipe(
- prompt = prompt,
- negative_prompt = negative_prompt,
- guidance_scale = guidance_scale,
- num_inference_steps = num_inference_steps,
- width = width,
- height = height,
- generator = generator
- ).images[0]
-
- return image, seed
-
- examples = [
-
- ]
-
- css="""
- #col-container {
- margin: 0 auto;
- max-width: 800px;
- }
- """
-
- with gr.Blocks(css=css) as demo:
-
- with gr.Column(elem_id="col-container"):
- gr.Markdown(f"""
- ### Stable Diffusion 3 测试
- #### By 你的名字
- """)
-
- with gr.Row():
-
- prompt = gr.Text(
- label="提示词",
- show_label=False,
- max_lines=1,
- placeholder="请输入提示词",
- container=False,
- )
-
- run_button = gr.Button("生成", scale=0)
-
- result = gr.Image(label="Result", show_label=False)
-
- with gr.Accordion("更多参数", open=False):
-
- negative_prompt = gr.Text(
- label="负面提示词",
- max_lines=1,
- placeholder="请输入负面提示词",
- )
-
- seed = gr.Slider(
- label="Seed",
- minimum=0,
- maximum=MAX_SEED,
- step=1,
- value=0,
- )
-
- randomize_seed = gr.Checkbox(label="随机种子", value=True)
-
- with gr.Row():
-
- width = gr.Slider(
- label="宽",
- minimum=256,
- maximum=MAX_IMAGE_SIZE,
- step=64,
- value=1024,
- )
-
- height = gr.Slider(
- label="高",
- minimum=256,
- maximum=MAX_IMAGE_SIZE,
- step=64,
- value=1024,
- )
-
- with gr.Row():
-
- guidance_scale = gr.Slider(
- label="Guidance scale",
- minimum=0.0,
- maximum=10.0,
- step=0.1,
- value=5.0,
- )
-
- num_inference_steps = gr.Slider(
- label="迭代步数",
- minimum=1,
- maximum=50,
- step=1,
- value=28,
- )
-
-
- gr.on(
- triggers=[run_button.click, prompt.submit, negative_prompt.submit],
- fn = infer,
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
- outputs = [result, seed]
- )
-
- demo.launch(server_name="0.0.0.0", server_port=7862, show_error=True)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。