赞
踩
直接去下载官方的yolov8源码就行,那里面集成了 obb
ultralytics/ultralytics/cfg/models/v8 at main · ultralytics/ultralytics · GitHub
如果你训练过yolov5以及以上的yolo环境,可以直接拷贝一个用就行,如果没有的话 直接pip
pip install requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
可以配置cuda,跑的比较快
标注方法有两种,一中是下载标注工具 X-Anylabeling
方法可以看我博客
不过上面那种标注方式我训练时总是报错 一直找不到原因,有知道的可以指教指教
另一种标注方式
用rolabelimg旋转标注软件
GitHub - cgvict/roLabelImg: Label Rotated Rect On Images for training
配置完环境后 直接右键运行 roLabelImg.py文件
可以用旋转标注 标注后点击 标注的框 用 z,x,c,v 来更改 角度
生成的是xml文件
需要转换成dota能用的obb的txt文件
转换脚本
- # 文件名称 :roxml_to_dota.py
- # 功能描述 :把rolabelimg标注的xml文件转换成dota能识别的xml文件,
- # 再转换成dota格式的txt文件
- # 把旋转框 cx,cy,w,h,angle,或者矩形框cx,cy,w,h,转换成四点坐标x1,y1,x2,y2,x3,y3,x4,y4
- import os
- import xml.etree.ElementTree as ET
- import math
-
- cls_list = ['angle'] # 修改为自己的标签
-
-
- def edit_xml(xml_file, dotaxml_file):
- """
- 修改xml文件
- :param xml_file:xml文件的路径
- :return:
- """
-
- # dxml_file = open(xml_file,encoding='gbk')
- # tree = ET.parse(dxml_file).getroot()
-
- tree = ET.parse(xml_file)
- objs = tree.findall('object')
- for ix, obj in enumerate(objs):
- x0 = ET.Element("x0") # 创建节点
- y0 = ET.Element("y0")
- x1 = ET.Element("x1")
- y1 = ET.Element("y1")
- x2 = ET.Element("x2")
- y2 = ET.Element("y2")
- x3 = ET.Element("x3")
- y3 = ET.Element("y3")
- # obj_type = obj.find('bndbox')
- # type = obj_type.text
- # print(xml_file)
-
- if (obj.find('robndbox') == None):
- obj_bnd = obj.find('bndbox')
- obj_xmin = obj_bnd.find('xmin')
- obj_ymin = obj_bnd.find('ymin')
- obj_xmax = obj_bnd.find('xmax')
- obj_ymax = obj_bnd.find('ymax')
- # 以防有负值坐标
- xmin = max(float(obj_xmin.text), 0)
- ymin = max(float(obj_ymin.text), 0)
- xmax = max(float(obj_xmax.text), 0)
- ymax = max(float(obj_ymax.text), 0)
- obj_bnd.remove(obj_xmin) # 删除节点
- obj_bnd.remove(obj_ymin)
- obj_bnd.remove(obj_xmax)
- obj_bnd.remove(obj_ymax)
- x0.text = str(xmin)
- y0.text = str(ymax)
- x1.text = str(xmax)
- y1.text = str(ymax)
- x2.text = str(xmax)
- y2.text = str(ymin)
- x3.text = str(xmin)
- y3.text = str(ymin)
- else:
- obj_bnd = obj.find('robndbox')
- obj_bnd.tag = 'bndbox' # 修改节点名
- obj_cx = obj_bnd.find('cx')
- obj_cy = obj_bnd.find('cy')
- obj_w = obj_bnd.find('w')
- obj_h = obj_bnd.find('h')
- obj_angle = obj_bnd.find('angle')
- cx = float(obj_cx.text)
- cy = float(obj_cy.text)
- w = float(obj_w.text)
- h = float(obj_h.text)
- angle = float(obj_angle.text)
- obj_bnd.remove(obj_cx) # 删除节点
- obj_bnd.remove(obj_cy)
- obj_bnd.remove(obj_w)
- obj_bnd.remove(obj_h)
- obj_bnd.remove(obj_angle)
-
- x0.text, y0.text = rotatePoint(cx, cy, cx - w / 2, cy - h / 2, -angle)
- x1.text, y1.text = rotatePoint(cx, cy, cx + w / 2, cy - h / 2, -angle)
- x2.text, y2.text = rotatePoint(cx, cy, cx + w / 2, cy + h / 2, -angle)
- x3.text, y3.text = rotatePoint(cx, cy, cx - w / 2, cy + h / 2, -angle)
-
- # obj.remove(obj_type) # 删除节点
- obj_bnd.append(x0) # 新增节点
- obj_bnd.append(y0)
- obj_bnd.append(x1)
- obj_bnd.append(y1)
- obj_bnd.append(x2)
- obj_bnd.append(y2)
- obj_bnd.append(x3)
- obj_bnd.append(y3)
-
- tree.write(dotaxml_file, method='xml', encoding='utf-8') # 更新xml文件
-
-
- # 转换成四点坐标
- def rotatePoint(xc, yc, xp, yp, theta):
- xoff = xp - xc;
- yoff = yp - yc;
- cosTheta = math.cos(theta)
- sinTheta = math.sin(theta)
- pResx = cosTheta * xoff + sinTheta * yoff
- pResy = - sinTheta * xoff + cosTheta * yoff
- return str(int(xc + pResx)), str(int(yc + pResy))
-
-
- def totxt(xml_path, out_path):
- # 想要生成的txt文件保存的路径,这里可以自己修改
-
- files = os.listdir(xml_path)
- i = 0
- for file in files:
-
- tree = ET.parse(xml_path + os.sep + file)
- root = tree.getroot()
-
- name = file.split('.')[0]
-
- output = out_path + '\\' + name + '.txt'
- file = open(output, 'w')
- i = i + 1
- objs = tree.findall('object')
- for obj in objs:
- cls = obj.find('name').text
- box = obj.find('bndbox')
- x0 = int(float(box.find('x0').text))
- y0 = int(float(box.find('y0').text))
- x1 = int(float(box.find('x1').text))
- y1 = int(float(box.find('y1').text))
- x2 = int(float(box.find('x2').text))
- y2 = int(float(box.find('y2').text))
- x3 = int(float(box.find('x3').text))
- y3 = int(float(box.find('y3').text))
- if x0 < 0:
- x0 = 0
- if x1 < 0:
- x1 = 0
- if x2 < 0:
- x2 = 0
- if x3 < 0:
- x3 = 0
- if y0 < 0:
- y0 = 0
- if y1 < 0:
- y1 = 0
- if y2 < 0:
- y2 = 0
- if y3 < 0:
- y3 = 0
- for cls_index, cls_name in enumerate(cls_list):
- if cls == cls_name:
- file.write("{} {} {} {} {} {} {} {} {} {}\n".format(x0, y0, x1, y1, x2, y2, x3, y3, cls, cls_index))
- file.close()
- # print(output)
- print(i)
-
-
- if __name__ == '__main__':
- # -----**** 第一步:把xml文件统一转换成旋转框的xml文件 ****-----
- roxml_path = r'H:\DL\YOLOv8_OBB_main\dataset_set\angle\1'
- dotaxml_path = r'H:\DL\YOLOv8_OBB_main\dataset_set\angle\2'
- out_path = r'H:\DL\YOLOv8_OBB_main\dataset_set\angle\4'
- filelist = os.listdir(roxml_path)
- for file in filelist:
- edit_xml(os.path.join(roxml_path, file), os.path.join(dotaxml_path, file))
-
- # -----**** 第二步:把旋转框xml文件转换成txt格式 ****-----
- totxt(dotaxml_path, out_path)
转换后是如下的样子
打开你的数据集中的标签文件夹,新建两个文档 名称如下
然后 复制你文件夹路径,不是图片 也不是标签
用obb中自带的转换脚本进行转换 那个路径是你数据集的路径
- from ultralytics.data.converter import convert_dota_to_yolo_obb
-
- convert_dota_to_yolo_obb(r'H:\DL\YOLOv8_OBB_main\dataset_set\angle\00')
拉到大约376行修改你标注的标签名和数量
还有修改大约420行左右的地方 将这里改成你图片的后缀,不然就没有效果
然后你运行上方那个自带的转换代码,标签文件中会生成train和val两个文件夹
转换成功的txt如下,这就可以训练
配置好yolov8obb的环境和yaml文件,就可以训练了
可以直接写新建一个py文件,train.py
- from ultralytics import YOLO
-
- model_yaml_path = r"H:\DL\YOLOv8_OBB_main\ultralytics\cfg\models\v8\yolov8-obb.yaml"
- #数据集配置文件
- data_yaml_path = 'data/hat.yaml'
- #预训练模型
- pre_model_name = 'yolov8s-obb.pt'
-
- def main():
- model = YOLO(model_yaml_path).load(pre_model_name) # build from YAML and transfer weights
-
- model.train(data=data_yaml_path,
- epochs=500,
- imgsz=640,
- batch=6,
- workers=5,
- name="train_obb/exp")
-
- if __name__ == '__main__':
- main()
-
- # yolo obb train data=data/hat.yaml model=yolov8s-obb.pt epochs=200 imgsz=640 device=0
- from ultralytics import YOLO
-
- # Load a model
- # model = YOLO("yolov8n-obb.pt") # load an official model
- model = YOLO(r"H:\DL\YOLOv8_OBB_main\runs\obb\train_obb\exp4\weights\best.pt") # load a custom model
-
- # Predict with the model
- results = model(r"C:\Users\Administrator\Desktop\gule\test",
- name="detect_obb/exp",
- conf=0.45,
- save=True,
- device='0'
- ) # predict on an image
- from ultralytics import YOLO
-
- model=YOLO(r"H:\DL\YOLOv8_OBB_main\runs\obb\train_obb\exp16\weights\best.pt")
-
- model.export(format='onnx',device='0')
依旧是大佬的源码修改 https://github.com/guojin-yan/YoloDeployCsharp.git
然后缺哪种包 直接在nuget中下载就好
运行后如下
当然你也可以将其中的一个或者两个取出 进行封装为dll
创建class.cs文件 定义自己所需的nms 置信度 和 类别数量以及类别名
然后生成自己的dll 并且引到你的程序中
然后运行程序就可以了
有问题可以在评论区问或者私信我!!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。