当前位置:   article > 正文

docker-compose搭建部署 Skywalking_docker-compose部署skywalking

docker-compose部署skywalking

1.1 微服务系统监控三要素

  • Logging 就是记录系统行为的离散事件,例如,服务在处理某个请求时打印的错误日志,我们可以将这些日志信息记录到 ElasticSearch 或是其他存储中,然后通过 Kibana 或是其他工具来分析这些日志了解服务的行为和状态。大多数情况下,日志记录的数据很分散,并且相互独立,比如错误日志、请求处理过程中关键步骤的日志等等。
  • Metrics系统在一段时间内某一方面的某个度量,可聚合的数据,且通常是固定类型的时序数据,例如,电商系统在一分钟内的请求次数。我们常见的监控系统中记录的数据都属于这个范畴,例如 Promethus、Open-Falcon 等,这些监控系统最终给运维人员展示的是一张张二维的折线图。Metrics 是可以聚合的,例如,为电商系统中每个 HTTP 接口添加一个计数器,计算每个接口的 QPS,之后我们就可以通过简单的加和计算得到系统的总负载情况。
  • Tracing 即我们常说的分布式链路追踪,记录单个请求的处理流程,其中包括服务调用和处理时长等信息。在微服务架构系统中一个请求会经过很多服务处理,调用链路会非常长,要确定中间哪个服务出现异常是非常麻烦的一件事。通过分布式链路追踪,运维人员就可以构建一个请求的视图,这个视图上展示了一个请求从进入系统开始到返回响应的整个流程。这样,就可以从中了解到所有服务的异常情况、网络调用,以及系统的性能瓶颈等。

 1.2 什么是链路追踪

谷歌在 2010 年 4 月发表了一篇论文《Dapper, a Large-Scale Distributed Systems Tracing Infrastructure》介绍了分布式追踪的概念,之后很多互联网公司都开始根据这篇论文打造自己的分布式链路追踪系统。APM 系统的核心技术就是分布式链路追踪。

论文在线地址:https://storage.googleapis.com/pub-tools-public-publication-data/pdf/36356.pdf

国内的翻译版:Dapper,大规模分布式系统的跟踪系统 by bigbullyicon-default.png?t=N7T8https://bigbully.github.io/Dapper-translation/分布式追踪系统的原理:

分布式追踪系统大体分为三个部分,数据采集、数据持久化、数据展示。数据采集是指在代码中埋点,设置请求中要上报的阶段,以及设置当前记录的阶段隶属于哪个上级阶段。数据持久化则是指将上报的数据落盘存储,数据展示则是前端查询与之关联的请求阶段,并在界面上呈现。

OpenTracing(学习OpenTracing,有助于我们运用好Skywalking )

1.数据模型这部分在 OpenTracing 的规范中写的非常清楚,细节可参考原始文档 《The OpenTracing Semantic Specification》icon-default.png?t=N7T8https://github.com/opentracing/specification/blob/master/specification.md

OpenTracing的几个概念:

Trace:一个 Trace 代表一个事务、请求或是流程在分布式系统中的执行过程。OpenTracing 中的一条 Trace调用链,由多个 Span 组成,一个 Span 代表系统中具有开始时间和执行时长的逻辑单元,Span 一般会有一个名称,一条 Trace 中 Span 是首尾连接的。

Span:Span 代表系统中具有开始时间和执行时长的逻辑单元,Span 之间通过嵌套或者顺序排列建立逻辑因果关系。每个 Span 中可以包含以下的信息:

  • 操作名称:例如访问的具体 RPC 服务,访问的 URL 地址等;
  • 起始时间;2023-10-11 22:00:00
  • 结束时间;2021-10-12 22:00:00
  • Span Tag:一组键值对(k-v)构成的Span标签集合,其中键必须为字符串类型,值可以是字符串、bool 值或者数字;
  • Span Log:一组 Span 的日志集合;
  • SpanContext:Trace 的全局上下文信息;
  • References:Span 之间的引用关系,下面详细说明 Span 之间的引用关系;

 在一个 Trace 中,一个 Span 可以和一个或者多个 Span 间存在因果关系。目前,OpenTracing 定义了 ChildOf 和 FollowsFrom 两种 Span 之间的引用关系。这两种引用类型代表了子节点和父节点间的直接因果关系。

  • ChildOf 关系:一个 Span 可能是一个父级 Span 的孩子,即为 ChildOf 关系。下面这些情况会构成 ChildOf 关系:

    • 一个 HTTP 请求之中,被调用的服务端产生的 Span,与发起调用的客户端产生的 Span,就构成了 ChildOf 关系;
    • 一个 SQL Insert 操作的 Span,和 ORM 的 save 方法的 Span 构成 ChildOf 关系。

 很明显,上述 ChildOf 关系中的父级 Span 都要等待子 Span 的返回,子 Span 的执行时间影响了其所在父级 Span 的执行时间,父级 Span 依赖子 Span 的执行结果。除了串行的任务之外,我们的逻辑中还有很多并行的任务,它们对应的 Span 也是并行的,这种情况下一个父级 Span 可以合并所有子 Span 的执行结果并等待所有并行子 Span 结束。

FollowsFrom 关系:表示跟随关系,意为在某个阶段之后发生了另一个阶段,用来描述顺序执行关系

Logs:每个 Span 可以进行多次 Logs 操作,每一次 Logs 操作,都需要带一个时间戳,以及一个可选的附加信息。

Tags:每个 Span 可以有多个键值对形式的 Tags,Tags 是没有时间戳的,只是为 Span 添加一些简单解释和补充信息

SpanContext 和 Baggage:

SpanContext 表示进程边界,在跨进调用时需要将一些全局信息,例如,TraceId、当前 SpanId 等信息封装到 Baggage 中传递到另一个进程(下游系统)中。

Baggage 是存储在 SpanContext 中的一个键值对集合。它会在一条 Trace 中全局传输,该 Trace 中的所有 Span 都可以获取到其中的信息。

需要注意的是,由于 Baggage 需要跨进程全局传输,就会涉及相关数据的序列化和反序列化操作,如果在 Baggage 中存放过多的数据,就会导致序列化和反序列化操作耗时变长,使整个系统的 RPC 的延迟增加、吞吐量下降。

虽然 Baggage 与 Span Tags 一样,都是键值对集合,但两者最大区别在于 Span Tags 中的信息不会跨进程传输,而 Baggage 需要全局传输。因此,OpenTracing 要求实现提供 Inject 和 Extract 两种操作,SpanContext 可以通过 Inject 操作向 Baggage 中添加键值对数据,通过 Extract 从 Baggage 中获取键值对数据。

2、核心接口语义:

OpenTracing 希望各个实现平台能够根据上述的核心概念来建模实现,不仅如此,OpenTracing 还提供了核心接口的描述,帮助开发人员更好的实现 OpenTracing 规范。

  • Span 接口

Span接口必须实现以下的功能:

    • 获取关联的 SpanContext:通过 Span 获取关联的 SpanContext 对象。
    • 关闭(Finish)Span:完成已经开始的 Span。
    • 添加 Span Tag:为 Span 添加 Tag 键值对。
    • 添加 Log:为 Span 增加一个 Log 事件。
    • 添加 Baggage Item:向 Baggage 中添加一组键值对。
    • 获取 Baggage Item:根据 Key 获取 Baggage 中的元素。
  • SpanContext 接口

SpanContext 接口必须实现以下功能,用户可以通过 Span 实例或者 Tracer 的 Extract 能力获取 SpanContext 接口实例

  • Tracer 接口

    Tracer 接口必须实现以下功能:

  • 创建 Span:创建新的 Span。

  • 注入 SpanContext:主要是将跨进程调用携带的 Baggage 数据记录到当前 SpanC

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/酷酷是懒虫/article/detail/829043
推荐阅读
相关标签
  

闽ICP备14008679号