当前位置:   article > 正文

小白都理解的人工智能系列(12)——过拟合_人工智能过拟合

人工智能过拟合

问题1:什么是过拟合?

机器学习希望尽可能减少误差,所以就导致了学到的函数不是我们需要的结果,就是过拟合。

如下图,红线是机器学习学到的函数,它希望误差尽可能小,所以几乎经过了每一个点,而蓝线才是我们最终希望的结果!

如果用红线做预测,结果肯定是不准确的,最终会导致过拟合现象。

不能很好地表达除了训练数据以外的数据!



问题2:如何解决过拟合?

方法1——增加数据量

如果增加了足够多的数据量,那么红线就会慢慢被拉直。


方法2——运用正规化


下图cost代表原始误差,如果w变大,那么误差也会变大,相当于给了1个惩罚。


下图通过调整机器学习对于某些神经元的依赖,来调整w的值,进行相应的惩罚。






声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/酷酷是懒虫/article/detail/778842
推荐阅读
相关标签
  

闽ICP备14008679号