赞
踩
什么是范式:“范式” 是一个用于表示、简化或标准化特定类型数据或表达式的术语。它通常用于不同领域,如布尔代数、关系数据库、逻辑表达式等。范式的目标通常是将复杂的数据或表达式变成更简单、更易于处理的形式。
合取(Conjunction)是逻辑中的一种基本操作,它表示在多个条件都为真时,整个条件为真。合取通常用符号 “∧” 表示。
例如,如果有两个条件 A 和 B,A ∧ B 表示只有当 A 和 B 都为真时,整个条件才为真。
设 A=B1 ∧ B2 ∧ … ∧ Bn
其中,Bi =L1 ∨ L2 ∨… ∨ Lmi ,而Lj为原子公式或其否定。则称A为合取范式。
如:P(x) ∧ (P(x)∨Q(y)∨~ R(x,y))
任何命题公式,最终都能够化成
(
A
1
∨
A
2
)
∧
(
A
3
∨
A
4
)
(A_{1}∨A_2)∧(A_3∨A_4 )
(A1∨A2)∧(A3∨A4)的形式,被称为 “ 合取范式”。
设 A=B1 ∨ B2 ∨ … ∨ Bn
其中,Bi =L1 ∧ L2 ∧ … ∧Lmi , 而Lj为原子公式或其否定。则称A为析取范式。
如:P(x)∨(P(x)∧Q(y)∧~R(x,y))
一个谓词公式的所有量词均非否定地出现在公式的最前面,且它的辖域一直延伸到公式之末,同时公式中不出现连接词→及 ↔ 。
例:(
∀
\forall
∀x)(
∃
\exists
∃y)(
∀
\forall
∀z)(P(x)∧F(y, z)∧Q(y,z))
在前束范式的首标中不出现存在量词,即从前束范式中消去全部存在量词所得的公式。
其一般形式为:
(∀x1)(∀x2)…(∀x3)M(x1, x2 ,….x3)
其中M(x1, x2 ,….x3)是一个合取范式,称为Skolem标准型的母式
连接词化归律:P →Q 等价于 ~P ∨Q
由
A= (∀x) ((∀y)P(x,y)→~(∀y)(Q(x,y)→R(x,y)) )
化为
A= (∀x)((∀y)P(x,y)∨(∀y)(~Q(x,y)∨R(x,y)))
(P) = P 双重否定律
~(P ∧ Q) = ~P ∨ ~Q 摩根定律
~(P ∨ Q) = ~P ∧ ~Q
~ (∀x)P = (
∃
\exists
∃x)(~P) 量词转换律
~ (
∃
\exists
∃x)P = (∀x)(~P)
存在量词未出现在全称量词的辖域内时,用一个个体常量替换其所有约束变元。
否则,用skolem函数替换其所有其约束变元。
其基本思想:
检查子句集S中是否包含空子句,若包含,则S不可满足,不包含,就在子句集中选择合适的子句进行归结,归结出空子句,则S不可满足
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。