赞
踩
代码都是学习别人的,但我分享几点我踩过的大坑。
1.蒙特卡洛的V值
书上给的例子,是一次取一条轨迹,v=r+gamma*v 依次计算状态价值,这几乎是全部用蒙特卡洛方法的计算状态价值,并且没有对各条轨迹取均值,我想这种方法是极其不好的
2.样本不是独立同分布
由于1.中的原因,取到的样本不是独立同分布,把这种样本放入训练,可能会大幅影响训练效果。
(2022/12/29注 :可见当时没学明白,ppo是on-policy 样本,1中也不是蒙特卡洛,还是TD-error)
3.代码写的太繁复。
俗话说的好,宁简勿繁,把太多方法封装成函数,在前期是不太好的行为,非常不便于调试,应当全部删去。
4.神经网络极易输出[nan]
可能是因为用了torch.Tensor()来转化向量,double型向量这使得他的内存占用高,改为torch.FloatTensor()有明显改善。这一点极其重要,如果不用这个很可能根本没办法训练
训练效果
代码如下
- """
- """
- import torch.nn.functional as F
- import torchvision.models as models
- import retro
- import hiddenlayer as hl
- import torch
- # import retro
- import pandas as pd
- import numpy as np
- import gym
- import torch.nn as nn
- from torch.distributions import Normal
- class DQBReplayer:
- def __init__(self,capacity):
- self.memory = pd.DataFrame(index=range(capacity),columns=['observation','action','reward','next_observation','done','step'])
- self.i=0
- self.count=0
- self.capacity=capacity
- def store(self,*args):
-
- self.memory.loc[self.i]=args
- self.i=(self.i+1)%self.capacity
- self.count=min(self.count+1,self.capacity)
- def sample(self,size=32):
- indics=np.random.choice(self.count,size=size)
-
- return (np.stack(self.memory.loc[indics,field]) for field in self.memory.columns)#为什么#是第indics行和feild列
- def clear(self):
- self.memory.drop(self.memory.index,inplace=True)
- self.count=0
- self.i=0
- #
- class PolicyNetwork(nn.Module):
- def __init__(self):
- super(PolicyNetwork, self).__init__()
- self.relu = nn.ReLU()
- self.fc1 = nn.Linear(3, 64)
- self.fc2 = nn.Linear(64, 256)
- self.fc_mu = nn.Linear(256, 1)
- self.fc_std = nn.Linear(256, 1)
- self.tanh = nn.Tanh()
- self.softplus = nn.Softplus()
-
-
-
- def forward(self, x):
- x = self.relu(self.fc1(x))
- x = self.relu(self.fc2(x))
- mu = 2 * self.tanh(self.fc_mu(x))
- std = self.softplus(self.fc_std(x)) + 1e-3
- return mu, std
-
- def select_action(self, state):
-
- with torch.no_grad():
- mu, std = self.forward(state)
- n = Normal(mu, std)
- action = n.sample()
- # print(" ac{:.1f},mu{},std{}".format( float(action),mu,std), end=" ")
- return np.clip(action.item(), -2., 2.)
-
-
- class ValueNetwork(nn.Module):
- def __init__(self):
- super(ValueNetwork, self).__init__()
- self.relu = nn.ReLU()
- self.fc1 = nn.Linear(3, 64)
- self.fc2 = nn.Linear(64, 256)
- self.fc3 = nn.Linear(256, 1)
-
- def forward(self, x):
- x = self.relu(self.fc1(x))
- x = self.relu(self.fc2(x))
- x = self.fc3(x)
- return x
-
-
-
- class PPO(nn.Module):
- def __init__(self):
- super(PPO,self).__init__()
- self.replayer=DQBReplayer(capacity=1000)
- self.gamma=0.99
- self.policy = PolicyNetwork().to(device)
- self.old_policy = PolicyNetwork().to(device)
- self.value = ValueNetwork().to(device)
- self.learn_step=0
- self.canvasl = hl.Canvas()
- self.history = hl.History()
-
-
-
- if __name__ == "__main__":
- device=torch.device("cuda" if torch.cuda.is_available() else"cpu")
- env=gym.make("Pendulum-v0").unwrapped
-
- net=PPO().to(device)
- optim = torch.optim.Adam(net.policy.parameters(), lr=0.001)
- value_optim= torch.optim.Adam(net.value.parameters(), lr=0.001)
-
- for i in range(200000):
- state = env.reset()
- epoch_reward=0#每局游戏的累计奖励
- for step in range(200):
- # env.render()
- state_tensor = torch.FloatTensor(state).to(device)
- action=net.policy.select_action(state_tensor)
- next_state,r,done,info=env.step([action])
-
- reward = (r + 8.1) / 8.1
- epoch_reward+=reward
- net.replayer.store(state, action, reward, next_state, done,step)
- net.learn_step += 1
- state = next_state
-
- net.old_policy.load_state_dict(net.policy.state_dict())
- for K in range(10):
- sample_n = net.replayer.count
- states, actions, rewards, next_states, dones, steps = net.replayer.sample(32)
- states = torch.FloatTensor(states).to(device)
- next_states = torch.FloatTensor(next_states).to(device)
- actions = torch.FloatTensor(actions).unsqueeze(1).to(device)
- rewards = torch.FloatTensor(rewards).unsqueeze(1).to(device)
- with torch.no_grad(): # 为什么
- old_mu, old_std = net.old_policy(states)
- old_n = Normal(old_mu, old_std)
-
- value_target = rewards + net.gamma * net.value(next_states)
- advantage = value_target - net.value(states)
-
- mu, std = net.policy(states)
- n = Normal(mu, std)
- log_prob = n.log_prob(actions)
- old_log_prob = old_n.log_prob(actions)
- ratio = torch.exp(log_prob - old_log_prob)
- L1 = ratio * advantage
- L2 = torch.clamp(ratio, 0.8, 1.2) * advantage
- loss = torch.min(L1, L2)
- loss = - loss.mean()
- # writer.add_scalar('action loss', loss.item(), steps)
-
- optim.zero_grad()
- loss.backward()
- optim.step()
- #clear
- value_loss = F.mse_loss(value_target, net.value(states))
- value_optim.zero_grad()
- value_loss.backward()
- value_optim.step()
- net.replayer.clear()
- # writer.add_scalar('value loss', value_loss.item(), steps)
-
- if i % 10 == 0 and i!=0:
- print('Epoch:{}, episode reward is {}'.format(i, epoch_reward))
- torch.save(net.policy.state_dict(), "pendulun_para\\reward"+str(epoch_reward//10)+'ppo-policy.para')
- # net.history.log((i * 200), avg_reward=epoch_reward/10)
- # with net.canvasl:
- # net.canvasl.draw_plot(net.history["avg_reward"])
- epoch_reward = 0
-
-

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。