赞
踩
InternVL 运行 InternVL 1.5-8bit教程
InternVL 官网仓库及教程
1. 设置最小环境
- conda create --name internvl python=3.10 -y
- conda activate internvl
- conda install pytorch==2.2.2 torchvision pytorch-cuda=11.8 -c pytorch -c nvidia -y
- pip install transformers sentencepiece peft einops bitsandbytes accelerate timm ninja packaging protobuf
2.更改模型的cfg文件(config.json)
OpenGVLab/InternVL-Chat-V1-5-Int8 里面包含了config.json文件
use_flash_attn
false
attn_implementation
eager
3.准备脚本 inter.py
- from transformers import AutoTokenizer, AutoModel
- import torch
- import torchvision.transforms as T
- from PIL import Image
- from torchvision.transforms.functional import InterpolationMode
- IMAGENET_MEAN = (0.485, 0.456, 0.406)
- IMAGENET_STD = (0.229, 0.224, 0.225)
-
- def build_transform(input_size):
- MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
- transform = T.Compose([
- T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
- T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
- T.ToTensor(),
- T.Normalize(mean=MEAN, std=STD)
- ])
- return transform
-
- def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
- best_ratio_diff = float('inf')
- best_ratio = (1, 1)
- area = width * height
- for ratio in target_ratios:
- target_aspect_ratio = ratio[0] / ratio[1]
- ratio_diff = abs(aspect_ratio - target_aspect_ratio)
- if ratio_diff < best_ratio_diff:
- best_ratio_diff = ratio_diff
- best_ratio = ratio
- elif ratio_diff == best_ratio_diff:
- if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
- best_ratio = ratio
- return best_ratio
-
-
- def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
- orig_width, orig_height = image.size
- aspect_ratio = orig_width / orig_height
-
- # calculate the existing image aspect ratio
- target_ratios = set(
- (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
- i * j <= max_num and i * j >= min_num)
- target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
-
- # find the closest aspect ratio to the target
- target_aspect_ratio = find_closest_aspect_ratio(
- aspect_ratio, target_ratios, orig_width, orig_height, image_size)
-
- # calculate the target width and height
- target_width = image_size * target_aspect_ratio[0]
- target_height = image_size * target_aspect_ratio[1]
- blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
-
- # resize the image
- resized_img = image.resize((target_width, target_height))
- processed_images = []
- for i in range(blocks):
- box = (
- (i % (target_width // image_size)) * image_size,
- (i // (target_width // image_size)) * image_size,
- ((i % (target_width // image_size)) + 1) * image_size,
- ((i // (target_width // image_size)) + 1) * image_size
- )
- # split the image
- split_img = resized_img.crop(box)
- processed_images.append(split_img)
- assert len(processed_images) == blocks
- if use_thumbnail and len(processed_images) != 1:
- thumbnail_img = image.resize((image_size, image_size))
- processed_images.append(thumbnail_img)
- return processed_images
-
- def load_image(image_file, input_size=448, max_num=6):
- image = Image.open(image_file).convert('RGB')
- transform = build_transform(input_size=input_size)
- images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
- pixel_values = [transform(image) for image in images]
- pixel_values = torch.stack(pixel_values)
- return pixel_values
-
- path = "./share_model/InternVL-Chat-V1-5-Int8"
- model = AutoModel.from_pretrained(
- path,
- torch_dtype=torch.bfloat16,
- low_cpu_mem_usage=True,
- trust_remote_code=True,
- load_in_8bit=True).eval()
- tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
- # set the max number of tiles in `max_num`
- pixel_values = load_image("misc/dog.jpg", max_num=6).to(torch.bfloat16).cuda()
-
- generation_config = dict(
- num_beams=1,
- max_new_tokens=512,
- do_sample=False,
- )
-
- # single-round single-image conversation
- question = "请详细描述图片" # Please describe the picture in detail
- response = model.chat(tokenizer, pixel_values, question, generation_config)
- print(question, response)
4.检查结果
- (internvl) /home/temp # python test_invl.py
- FlashAttention is not installed.
- The `load_in_4bit` and `load_in_8bit` arguments are deprecated and will be removed in the future versions. Please, pass a `BitsAndBytesConfig` object in `quantization_config` argument instead.
- Unused kwargs: ['quant_method']. These kwargs are not used in <class 'transformers.utils.quantization_config.BitsAndBytesConfig'>.
- Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:52<00:00, 8.77s/it]
- Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
- dynamic ViT batch size: 5
- 请详细描述图片 这张图片展示了一只金毛寻回犬幼犬坐在一片开满橙色花朵的草地上。幼犬的毛发是金黄色,看起来非常柔软和蓬松。它的眼睛是深色的,嘴巴张开,似乎在微笑或者是在喘气,显得非常活泼和快乐。背景是一片模糊的绿色草地,可能是由于使用了浅景深拍摄技术,使得焦点集中在幼犬身上,而背景则显得柔和模糊。整体上,这张图片传达了一种温馨和快乐的氛围,幼犬看起来非常健康和快乐。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。