当前位置:   article > 正文

Nvidia V100 GPU 运行 InternVL 1.5-8bit_intervl1.5

intervl1.5

        InternVL        运行 InternVL 1.5-8bit教程

        

        InternVL        官网仓库及教程

1. 设置最小环境

  1. conda create --name internvl python=3.10 -y
  2. conda activate internvl
  3. conda install pytorch==2.2.2 torchvision pytorch-cuda=11.8 -c pytorch -c nvidia -y
  4. pip install transformers sentencepiece peft einops bitsandbytes accelerate timm ninja packaging protobuf

2.更改模型的cfg文件(config.json

        OpenGVLab/InternVL-Chat-V1-5-Int8       里面包含了config.json文件

  • 设置use_flash_attnfalse
  • 设置attn_implementationeager

3.准备脚本        inter.py

  1. from transformers import AutoTokenizer, AutoModel
  2. import torch
  3. import torchvision.transforms as T
  4. from PIL import Image
  5. from torchvision.transforms.functional import InterpolationMode
  6. IMAGENET_MEAN = (0.485, 0.456, 0.406)
  7. IMAGENET_STD = (0.229, 0.224, 0.225)
  8. def build_transform(input_size):
  9. MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
  10. transform = T.Compose([
  11. T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
  12. T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
  13. T.ToTensor(),
  14. T.Normalize(mean=MEAN, std=STD)
  15. ])
  16. return transform
  17. def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
  18. best_ratio_diff = float('inf')
  19. best_ratio = (1, 1)
  20. area = width * height
  21. for ratio in target_ratios:
  22. target_aspect_ratio = ratio[0] / ratio[1]
  23. ratio_diff = abs(aspect_ratio - target_aspect_ratio)
  24. if ratio_diff < best_ratio_diff:
  25. best_ratio_diff = ratio_diff
  26. best_ratio = ratio
  27. elif ratio_diff == best_ratio_diff:
  28. if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
  29. best_ratio = ratio
  30. return best_ratio
  31. def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
  32. orig_width, orig_height = image.size
  33. aspect_ratio = orig_width / orig_height
  34. # calculate the existing image aspect ratio
  35. target_ratios = set(
  36. (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
  37. i * j <= max_num and i * j >= min_num)
  38. target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
  39. # find the closest aspect ratio to the target
  40. target_aspect_ratio = find_closest_aspect_ratio(
  41. aspect_ratio, target_ratios, orig_width, orig_height, image_size)
  42. # calculate the target width and height
  43. target_width = image_size * target_aspect_ratio[0]
  44. target_height = image_size * target_aspect_ratio[1]
  45. blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
  46. # resize the image
  47. resized_img = image.resize((target_width, target_height))
  48. processed_images = []
  49. for i in range(blocks):
  50. box = (
  51. (i % (target_width // image_size)) * image_size,
  52. (i // (target_width // image_size)) * image_size,
  53. ((i % (target_width // image_size)) + 1) * image_size,
  54. ((i // (target_width // image_size)) + 1) * image_size
  55. )
  56. # split the image
  57. split_img = resized_img.crop(box)
  58. processed_images.append(split_img)
  59. assert len(processed_images) == blocks
  60. if use_thumbnail and len(processed_images) != 1:
  61. thumbnail_img = image.resize((image_size, image_size))
  62. processed_images.append(thumbnail_img)
  63. return processed_images
  64. def load_image(image_file, input_size=448, max_num=6):
  65. image = Image.open(image_file).convert('RGB')
  66. transform = build_transform(input_size=input_size)
  67. images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
  68. pixel_values = [transform(image) for image in images]
  69. pixel_values = torch.stack(pixel_values)
  70. return pixel_values
  71. path = "./share_model/InternVL-Chat-V1-5-Int8"
  72. model = AutoModel.from_pretrained(
  73. path,
  74. torch_dtype=torch.bfloat16,
  75. low_cpu_mem_usage=True,
  76. trust_remote_code=True,
  77. load_in_8bit=True).eval()
  78. tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
  79. # set the max number of tiles in `max_num`
  80. pixel_values = load_image("misc/dog.jpg", max_num=6).to(torch.bfloat16).cuda()
  81. generation_config = dict(
  82. num_beams=1,
  83. max_new_tokens=512,
  84. do_sample=False,
  85. )
  86. # single-round single-image conversation
  87. question = "请详细描述图片" # Please describe the picture in detail
  88. response = model.chat(tokenizer, pixel_values, question, generation_config)
  89. print(question, response)

4.检查结果

  1. (internvl) /home/temp # python test_invl.py
  2. FlashAttention is not installed.
  3. The `load_in_4bit` and `load_in_8bit` arguments are deprecated and will be removed in the future versions. Please, pass a `BitsAndBytesConfig` object in `quantization_config` argument instead.
  4. Unused kwargs: ['quant_method']. These kwargs are not used in <class 'transformers.utils.quantization_config.BitsAndBytesConfig'>.
  5. Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6/6 [00:52<00:00, 8.77s/it]
  6. Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
  7. dynamic ViT batch size: 5
  8. 请详细描述图片 这张图片展示了一只金毛寻回犬幼犬坐在一片开满橙色花朵的草地上。幼犬的毛发是金黄色,看起来非常柔软和蓬松。它的眼睛是深色的,嘴巴张开,似乎在微笑或者是在喘气,显得非常活泼和快乐。背景是一片模糊的绿色草地,可能是由于使用了浅景深拍摄技术,使得焦点集中在幼犬身上,而背景则显得柔和模糊。整体上,这张图片传达了一种温馨和快乐的氛围,幼犬看起来非常健康和快乐。

本文内容由网友自发贡献,转载请注明出处:https://www.wpsshop.cn/w/运维做开发/article/detail/874385
推荐阅读
相关标签
  

闽ICP备14008679号