当前位置:   article > 正文

特征波长筛选算法有CARS,SPA,GA,MCUVE,光谱数据降维算法以及数据聚类算法PCA_高光谱特征波长筛选方法mcuve

高光谱特征波长筛选方法mcuve

特征波长筛选算法有CARS,SPA,GA,MCUVE,光谱数据降维算法以及数据聚类算法PCA,KPCA,KNN,HC层次聚类降维,以及SOM数据聚类算法,都是直接替换数据就可以用,程序内有注释,直接替换光谱数据,以及实测值,就可以做特征波长筛选以及数据聚类,同时本人也承接光谱代分析,光谱定量预测分析建模和分类预测建模

特征波长筛选算法在光谱分析中扮演着至关重要的角色。一些常用的特征波长筛选算法包括CARS、SPA、GA、MCUVE以及光谱数据降维算法和数据聚类算法PCA、KPCA、KNN、HC层次聚类降维以及SOM数据聚类算法。这些算法的实现非常简单,直接替换数据就可以用,程序内有注释,直接替换光谱数据和实测值,就可以做特征波长筛选以及数据聚类。

特征波长筛选算法的目的是通过分析光谱数据,确定哪些波长对于特定的光谱测量是最重要的,可以提高光谱分析的准确性和有

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/717105
推荐阅读
相关标签
  

闽ICP备14008679号