赞
踩
虽然说咱也不知道这个Grad-CAM的数学理论是如何推导的,但是在看论文的时候发现很多论文里面都用了Grad-CAM来可视化模型的特征图,用来显示网络对ROI区域的捕捉。想详细了解的话看一下B站大佬噼里啪啦的讲解视频。
code:https://github.com/jacobgil/pytorch-grad-cam
安装pytorch-grad-cam :pip install grad-cam
官方给的例子:
我试着使用这个仓库来可视化我的vit模型,做的是一个五分类的病理图像分类,代码如下:
import argparse import cv2 import numpy as np import torch from pytorch_grad_cam import GradCAM, \ ScoreCAM, \ GradCAMPlusPlus, \ AblationCAM, \ XGradCAM, \ EigenCAM, \ EigenGradCAM, \ LayerCAM, \ FullGrad from pytorch_grad_cam import GuidedBackpropReLUModel from pytorch_grad_cam.utils.image import show_cam_on_image, \ preprocess_image from pytorch_grad_cam.ablation_layer import AblationLayerVit from vit_model import vit_base_patch16_224_in21k as create_model def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--use-cuda', action='store_true', default=False, help='Use NVIDIA GPU acceleration') parser.add_argument( '--image-path', type=str, default='/home/lwf/Project/Datatset/数据集/肺癌和结肠癌组织病理学图像/archive/colon_aca/colonca1.jpeg', help='Input image path') parser.add_argument('--aug_smooth', action='store_true', help='Apply test time augmentation to smooth the CAM') parser.add_argument( '--eigen_smooth', action='store_true', help='Reduce noise by taking the first principle componenet' 'of cam_weights*activations') parser.add_argument( '--method', type=str, default='fullgrad', help='Can be gradcam/gradcam++/scorecam/xgradcam/ablationcam') args = parser.parse_args() args.use_cuda = args.use_cuda and torch.cuda.is_available() if args.use_cuda: print('Using GPU for acceleration') else: print('Using CPU for computation') return args def reshape_transform(tensor, height=14, width=14): result = tensor[:, 1:, :].reshape(tensor.size(0), height, width, tensor.size(2)) # Bring the channels to the first dimension, # like in CNNs. result = result.transpose(2, 3).transpose(1, 2) return result if __name__ == '__main__': """ python vit_gradcam.py -image-path <path_to_image> Example usage of using cam-methods on a VIT network. """ args = get_args() methods = \ {"gradcam": GradCAM, "scorecam": ScoreCAM, "gradcam++": GradCAMPlusPlus, "ablationcam": AblationCAM, "xgradcam": XGradCAM, "eigencam": EigenCAM, "eigengradcam": EigenGradCAM, "layercam": LayerCAM, "fullgrad": FullGrad} if args.method not in list(methods.keys()): raise Exception(f"method should be one of {list(methods.keys())}") # model = torch.hub.load('facebookresearch/deit:main', # 'deit_tiny_patch16_224', pretrained=True) model = create_model(num_classes=5, has_logits=False) # load model weights model_weight_path = "/home/lwf/Project/vision-transformer-implemment/init_weights/lung_colon_weights/model-COVID12.pth" model.load_state_dict(torch.load(model_weight_path, map_location='cpu')) model.eval() if args.use_cuda: model = model.cuda() target_layers = [model.blocks[-1].norm1] if args.method not in methods: raise Exception(f"Method {args.method} not implemented") if args.method == "ablationcam": cam = methods[args.method](model=model, target_layers=target_layers, use_cuda=args.use_cuda, reshape_transform=reshape_transform, ablation_layer=AblationLayerVit()) else: cam = methods[args.method](model=model, target_layers=target_layers, use_cuda=args.use_cuda, reshape_transform=reshape_transform) rgb_img = cv2.imread(args.image_path, 1)[:, :, ::-1] rgb_img = cv2.resize(rgb_img, (224, 224)) rgb_img = np.float32(rgb_img) / 255 input_tensor = preprocess_image(rgb_img, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # If None, returns the map for the highest scoring category. # Otherwise, targets the requested category. targets = None # AblationCAM and ScoreCAM have batched implementations. # You can override the internal batch size for faster computation. cam.batch_size = 32 grayscale_cam = cam(input_tensor=input_tensor, targets=targets , eigen_smooth=args.eigen_smooth, aug_smooth=args.aug_smooth) # Here grayscale_cam has only one image in the batch grayscale_cam = grayscale_cam[0, :] cam_image = show_cam_on_image(rgb_img, grayscale_cam) cv2.imwrite(f'{args.method}_cam.jpg', cam_image)
可以使用多种方法来可视化特征图,我的可视化结果如下:
一般来说:常用的模型通常可视化下面这些层:
FasterRCNN: model.backbone
Resnet18 and 50: model.layer4[-1]
VGG and densenet161: model.features[-1]
mnasnet1_0: model.layers[-1]
ViT: model.blocks[-1].norm1
SwinT: model.layers[-1].blocks[-1].norm1
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。