赞
踩
在文本挖掘领域,大量的数据都是非结构化的,很难从信息中直接获取相关和期望的信息,一种文本挖掘的方法:主题模型(Topic Model)能够识别在文档里的主题,并且挖掘语料里隐藏信息,并且在主题聚合、从非结构化文本中提取信息、特征选择等场景有广泛的用途。
主题可以被定义为“语料库中具有相同词境的词的集合模式”,比如说,主题模型可以
LDA 模式是生成式模型,在这里,假设需要建模的数据为
判别式模型:对
生成式模型:描述一个联合概率分布
LDA 是一种矩阵分解技术,在向量空间中,任何语料(文档的集合)可以表示为文档(Document - Term,DT)矩阵。下面矩阵表达了一个语料库的组成:
. | … | |||
---|---|---|---|---|
0 | 2 | … | 3 | |
1 | 4 | … | 0 | |
… | … | … | … | |
1 | 1 | … | 0 |
其中,
. | … | |||
---|---|---|---|---|
0 | 2 | … | 3 | |
1 | 4 | … | 0 | |
… | … | … | … | |
1 | 1 | … | 0 |
上面显示了
. | … | |||
---|---|---|---|---|
0 | 2 | … | 3 | |
1 | 4 | … | 0 | |
… | … | … | … | |
1 | 1 | … | 0 |
上面显示了
LDA 假设文档是由多个主题的混合来产生的,每个文档的生成过程如下:
这些主题基于词的概率分布来产生词,给定文档数据集,LDA 可以学习出,是哪些主题产生了这些文档。
对于文档生成过程,则有,首先对于文档
吉布斯采样 (Gibbs Sampling) 首先选取概率向量的一个维度,给定其他维度的变量值当前维度的值,不断收敛来输出待估计的参数。具体地
LDA 对于每个文档的每一个字都有一个主题下标。但从文档聚类的角度来说,LDA 没有一个文档统一的聚类标签,而是每个字都有一个聚类标签,这个就是主题。LDA 每个字都有可能属于不同的类别,每个文档都有可能属于不同的类别。在大量的迭代后,主题分布和字分布都比较稳定也比较好了,LDA 模型收敛。
主题数量:主题数量从语料中抽取得到,使用 Kullback Leibler Divergence Score 可以获取最好的主题数量。
主题词数:组成一个主题所需要的词的数量。这些词的数量通常根据需求得到,如果说需求是抽取特征或者关键词,那么主题词数比较少,如果是抽取概念或者论点,那么主题词数比较多。
迭代次数:使得 LDA 算法收敛的最大迭代次数
doc1 = "Sugar is bad to consume. My sister likes to have sugar, but not my father."
doc2 = "My father spends a lot of time driving my sister around to dance practice."
doc3 = "Doctors suggest that driving may cause increased stress and blood pressure."
doc4 = "Sometimes I feel pressure to perform well at school, but my father never seems to drive my sister to do better."
doc5 = "Health experts say that Sugar is not good for your lifestyle."
# 整合文档数据
doc_complete = [doc1, doc2, doc3, doc4, doc5]
数据清洗对于任何文本挖掘任务来说都非常重要,在这个任务中,移除标点符号,停用词和标准化语料库(Lemmatizer,对于英文,将词归元)。
from nltk import stopwords
from nltk.stem.wordnet import WordNetLemmatizer
import string
stop = set(stopwords.words('english'))
exclude = set(string.punctuation)
lemma = WordNetLemmatizer()
def clean(doc):
stop_free = " ".join([i for i in doc.lower().split() if i not in stop])
punc_free = ''.join(ch for ch in stop_free if ch not in exclude)
normalized = " ".join(lemma.lemmatize(word) for word in punc_free.split())
return normalized
doc_clean = [clean(doc).split() for doc in doc_complete]
语料是由所有的文档组成的,要运行数学模型,将语料转化为矩阵来表达是比较好的方式。LDA 模型在整个 DT 矩阵中寻找重复的词语模式。Python 提供了许多很好的库来进行文本挖掘任务,“genism” 是处理文本数据比较好的库。下面的代码掩饰如何转换语料为 Document - Term 矩阵:
import genism
from gensim import corpora
# 创建语料的词语词典,每个单独的词语都会被赋予一个索引
dictionary = corpora.Dictionary(doc_clean)
# 使用上面的词典,将转换文档列表(语料)变成 DT 矩阵
doc_term_matrix = [dictionary.doc2bow(doc) for doc in doc_clean]
创建一个 LDA 对象,使用 DT 矩阵进行训练。训练需要上面的一些超参数,gensim 模块允许 LDA 模型从训练语料中进行估计,并且从新的文档中获得对主题分布的推断。
# 使用 gensim 来创建 LDA 模型对象
Lda = genism.models.ldamodel.LdaModel
# 在 DT 矩阵上运行和训练 LDA 模型
ldamodel = Lda(doc_term_matrix, num_topics=3, id2word = dictionary, passes=50)
# 输出结果
print(ldamodel.print_topics(num_topics=3, num_words=3))
[
'0.168*health + 0.083*sugar + 0.072*bad,
'0.061*consume + 0.050*drive + 0.050*sister,
'0.049*pressur + 0.049*father + 0.049*sister
]
每一行包含了主题词和主题词的权重,Topic 1 可以看作为“不良健康习惯”,Topic 3 可以看作 “家庭”。
主题模型的结果完全取决于特征在语料库中的表示,但是语料通常表示为比较稀疏的文档矩阵,因此减少矩阵的维度可以提升主题模型的结果。
根据频率来分布词,高频词更可能出现在结果中,低频词实际上是语料库中的弱特征,对于词频进行分析,可以决定什么频率的值应该被视为阈值。
比起频率特征,词性特征更关注于上下文的信息。主题模型尝试去映射相近的词作为主题,但是每个词在上下文上有可能重要性不同,比如说介词 “IN” 包含 “within”,“upon”, “except”,基数词 “CD” 包含:许多(many),若干(several),个把(a,few)等等,情态助动词 “MD” 包含 “may”,“must” 等等,这些词可能只是语言的支撑词,对实际意义影响不大,因此可以通过词性来消除这些词的影响。
为了得到主题中最重要的主题词,语料可以被分为固定大小的 batch,在这些 batch 上运行 LDA 模型会提供不同的结果,但是最佳的主题词会在这些 batch 上有交集。
比如说文本分类任务中,LDA 可以用来选择特征,因为训练数据中含有类别信息,可以在不同类别的结果中,删除相同的、比较常见的主题词,为主题类别提供更好的特征。
本文主要参考了[1],没有什么公式,用于对 LDA 有一个大概的了解,后面也会更深入 LDA 模型,可以一边运行上面的代码一边感受 LDA 的作用。
[1] https://www.analyticsvidhya.com/blog/2016/08/beginners-guide-to-topic-modeling-in-python
[2] http://link.springer.com/chapter/10.1007%2F978-3-642-13657-3_43
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。