赞
踩
mamba-ssm安装需要
Pytorch
>1.12CUDA
>11.6
按照链接博客就可以,我试过了
详细讲解如何在win10系统上安装多个版本的CUDA_如何同时安装cuda11.8 和 cuda12.0-CSDN博客
本人电脑环境
CUDA 11.8
cudnn 8302
Nvidia 2080Ti
打开终端:
nvidia-smi
右上角CUDA version
即为最高支持版本
一般默认C盘
CUDA
和cuDnn
,注意两者版本需匹配CUDA
一般会自动添加,如果没有则在Path
中添加下列环境变量
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vxx.x\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vxx.x\libnvvp
nvcc -V
一般默认添加
将下载到的压缩包解压到cuda
的安装路径C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vXXX
下并覆盖。
conda create -n your_env_name python=3.10.13
conda activate your_env_name
conda install cudatoolkit==11.8 -c nvidia
pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118
conda install -c "nvidia/label/cuda-11.8.0" cuda-nvcc
有大神编译了Windows下二进制文件,下载到本地后,在anacoda
终端中,切换到cd triton
所在文件夹,输入:
pip install triton-2.0.0-cp310-cp310-win_amd64.whl
pip install causal-conv1d==1.1.1 #存在报错可能性
anaconda
激活环境后进入该文件夹。输入:pip install .
或者
cd
到存储文件夹:
git clone https://github.com/Dao-AILab/causal-conv1d.git
cd causal-conv1d
git checkout v1.1.1
为什么要 v1.1.1 ,因为其是支持cu118的最高版本
git clone https://github.com/state-spaces/mamba.git
cd mamba
setup.py
修改配置FORCE_BUILD = os.getenv("MAMBA_FORCE_BUILD", "FALSE") == "FALSE"
SKIP_CUDA_BUILD = os.getenv("MAMBA_SKIP_CUDA_BUILD", "FALSE") == "FALSE"
1.在ops/selective_scan_interface.py
文件下,注释掉
# import selective_scan_cuda
2.在ops/selective_scan_interface.py
文件下
将
def selective_scan_fn(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False, return_last_state=False): """if return_last_state is True, returns (out, last_state) last_state has shape (batch, dim, dstate). Note that the gradient of the last state is not considered in the backward pass. """ return SelectiveScanFn.apply(u, delta, A, B, C, D, z, delta_bias, delta_softplus, return_last_state) def mamba_inner_fn( xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight, out_proj_weight, out_proj_bias, A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None, C_proj_bias=None, delta_softplus=True ): return MambaInnerFn.apply(xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight, out_proj_weight, out_proj_bias, A, B, C, D, delta_bias, B_proj_bias, C_proj_bias, delta_softplus)
替换为:
def selective_scan_fn(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False, return_last_state=False): """if return_last_state is True, returns (out, last_state) last_state has shape (batch, dim, dstate). Note that the gradient of the last state is not considered in the backward pass. """ return selective_scan_ref(u, delta, A, B, C, D, z, delta_bias, delta_softplus, return_last_state) def mamba_inner_fn( xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight, out_proj_weight, out_proj_bias, A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None, C_proj_bias=None, delta_softplus=True ): return mamba_inner_ref(xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight, out_proj_weight, out_proj_bias, A, B, C, D, delta_bias, B_proj_bias, C_proj_bias, delta_softplus)
mamba
文件夹下pip install .
详细讲解如何在win10系统上安装多个版本的CUDA_如何同时安装cuda11.8 和 cuda12.0-CSDN博客
win10 64位 环境下安装CUDA 11.8和 cuDNN v8.6.0_cudnn8.6.0-CSDN博客
Windows 下 CUDA, cudnn, pytoch 卸载、更新、安装 - 个人文章 - SegmentFault 思否
windows系统下anaconda中配置Mamba官方代码环境_windows配置mamba-ssm-CSDN博客
Mamba 环境安装踩坑问题汇总及解决方法_runtimeerror: mamba_ssm is only supported on cuda -CSDN博客
(Windows傻瓜教程)Mamba安装以及问题汇总(Causal-Conv1d & Mamba-ssm)-CSDN博客
运行Mamba项目时无法直接用pip install安装causal_conv1d和mamba_ssm_pip install causal-conv1d-CSDN博客
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。