当前位置:   article > 正文

机器学习——最小二乘法求解线性回归_(3)若用最小二乘法求解线性回归模型,给出最小二乘法的闭式解(w和b)及其推导过程。

(3)若用最小二乘法求解线性回归模型,给出最小二乘法的闭式解(w和b)及其推导过程。

参考:《机器学习》西瓜书————周志华

以下为个人笔记,不免有很多细节不对之处。仅供参考!


1、原理:        

        均方误差MES有非常好的几何意义,它对应了常用的欧几里得距离或简称“欧氏距离”(Euclidean distance).基于均方误差最小化来进行模型求解的方法称为“最小二乘法”(least square method).在线性回归中,最小二乘法就是试图找到一条直线,使所有样本到直线上的欧氏距离之和最小.

2、模型分析:

如何确定w和b呢?显然,关键在于如何衡量f(z)与y之间的差别,均方误差(2.2)是回归任务中最常用的性能度量,因此我们可试图让均方误差最小化,即:

 

 然后令式(3.5)(3.6)为零可得到w和b最优解得闭式解:

 

3、利用最小二乘法求解线性回归

关于求偏导过程:

推导手稿:

注意:

1.前面乘以二分之一是对损失函数求导时消除误差评分项的影响

2.,m是一个常数


 以上是参考周志华西瓜书

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/751081
推荐阅读
相关标签
  

闽ICP备14008679号