赞
踩
分形图是一种通过迭代规则生成自相似图案的艺术形式。
分形图包括曼德勃罗集、科赫曲线、谢尔宾斯基三角等代码等。
Tkinter是Python的标准GUI库,可以用于创建窗口、控件和其他图形界面元素。绘制分形图像,如曼德勃罗集或科赫曲线,通常需要利用递归和迭代的数学原理。需要注意的是,绘制分形图可能需要一些时间,尤其是当分形的迭代等级变高时。
下面使用Python的标准GUI库Tkinter实现曼德勃罗集、科赫曲线、谢尔宾斯基三角。
先给出效果图
源码如下:
- import tkinter as tk
-
- # 设置画布大小和坐标范围
- width, height = 400, 400
- x_min, x_max = -2.0, 1.0
- y_min, y_max = -1.5, 1.5
-
- # 定义颜色映射函数
- def color_map(n, max_iter):
- r, g, b = 0, 0, 0
- if n < max_iter:
- r = int((n / max_iter) * 255)
- g = int((n / max_iter) * 255)
- b = int((n / max_iter) * 255)
- return "#{:02x}{:02x}{:02x}".format(r, g, b)
-
- # 绘制曼德勃罗集
- def mandelbrot(canvas):
- max_iter = 100 # 最大迭代次数
-
- for x in range(width):
- for y in range(height):
- zx, zy = 0, 0
- cx = x_min + (x / width) * (x_max - x_min)
- cy = y_min + (y / height) * (y_max - y_min)
- c = complex(cx, cy)
-
- for i in range(max_iter):
- if abs(zx + zy) > 2.0:
- break
- zx, zy = zx * zx - zy * zy + cx, 2.0 * zx * zy + cy
-
- # 绘制像素点并填充颜色
- color = color_map(i, max_iter)
- canvas.create_rectangle(x, y, x + 1, y + 1, fill=color, outline="")
-
- # 创建窗口和画布
- window = tk.Tk()
- canvas = tk.Canvas(window, width=width, height=height)
- canvas.pack()
-
- # 调用绘制函数
- mandelbrot(canvas)
-
- # 运行窗口主循环
- window.mainloop()

提示:这个分形图从运行到出图有点慢——需要一些时间。
先给出效果图
源码如下:
- # 科赫曲线
- import tkinter as tk
- from math import sqrt
-
- def koch_line(canvas, p1, p2, level):
- if level == 0:
- canvas.create_line(p1, p2)
- else:
- dx = (p2[0] - p1[0]) / 3
- dy = (p2[1] - p1[1]) / 3
-
- p3 = (p1[0] + dx, p1[1] + dy)
- p5 = (p1[0] + 2*dx, p1[1] + 2*dy)
- x = p3[0] + (dx - dy * sqrt(3)) / 2
- y = p3[1] + (dx * sqrt(3) + dy) / 2
- p4 = (x, y)
-
- koch_line(canvas, p1, p3, level - 1)
- koch_line(canvas, p3, p4, level - 1)
- koch_line(canvas, p4, p5, level - 1)
- koch_line(canvas, p5, p2, level - 1)
-
- def draw_koch_snowflake():
- root = tk.Tk()
- root.title("Koch Snowflake")
- canvas = tk.Canvas(root, width=650, height=650, bg="white")
- canvas.pack()
-
- p1 = (100, 500)
- p2 = (500, 500)
- p3 = (300, 500 - (400 * sqrt(3) / 2))
-
- koch_line(canvas, p1, p2, 4)
- koch_line(canvas, p2, p3, 4)
- koch_line(canvas, p3, p1, 4)
-
- root.mainloop()
-
- draw_koch_snowflake()

先给出效果图
源码如下:
- # 谢尔宾斯基三角
- import tkinter as tk
-
- def sierpinski_triangle(canvas, vertices, level):
- x1, y1 = vertices[0]
- x2, y2 = vertices[1]
- x3, y3 = vertices[2]
-
- if level == 0:
- canvas.create_polygon(x1, y1, x2, y2, x3, y3, fill="black")
- else:
- x12 = (x1 + x2) / 2
- y12 = (y1 + y2) / 2
- x23 = (x2 + x3) / 2
- y23 = (y2 + y3) / 2
- x31 = (x3 + x1) / 2
- y31 = (y3 + y1) / 2
-
- sierpinski_triangle(canvas, [(x1, y1), (x12, y12), (x31, y31)], level - 1)
- sierpinski_triangle(canvas, [(x12, y12), (x2, y2), (x23, y23)], level - 1)
- sierpinski_triangle(canvas, [(x31, y31), (x23, y23), (x3, y3)], level - 1)
-
- root = tk.Tk()
- root.title("Sierpinski Triangle")
- canvas = tk.Canvas(root, width=600, height=520, bg="white")
- canvas.pack()
- sierpinski_triangle(canvas, [(300, 20), (20, 500), (580, 500)], 5)
- root.mainloop()
-

附录
Python 分形算法__代码里开出来的艺术之花https://zhuanlan.zhihu.com/p/489274872
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。