赞
踩
先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip204888 (备注大数据)
numpy 支持的数据类型比 Python 内置的类型要多很多,基本上可以和 C 语言的数据类型对应上,其中部分类型对应为 Python 内置的类型.
常用 NumPy 基本类型
名称 描述
bool_ :【布尔型数据类型(True 或者 False)】
int_ : 【默认的整数类型(类似于 C 语言中的 long,int32 或 int64)】
intc :【与 C 的 int 类型一样,一般是 int32 或 int 64】
intp :【用于索引的整数类型(类似于 C 的 ssize_t,一般情况下仍然是 int32 或 int64)】
int8 :【字节(-128 to 127)】
int16 :【整数(-32768 to 32767)】
int32 :【整数(-2147483648 to 2147483647)】
int64 :【整数(-9223372036854775808 to 9223372036854775807)】
uint8 :【无符号整数(0 to 255)】
uint16 :【无符号整数(0 to 65535)】
uint32 :【无符号整数(0 to 4294967295)】
uint64 :【无符号整数(0 to 18446744073709551615)】
float_ float64 :【类型的简写】
float16 :【半精度浮点数,包括:1 个符号位,5 个指数位,10 个尾数位】
float32 :【单精度浮点数,包括:1 个符号位,8 个指数位,23 个尾数位】
float64 :【双精度浮点数,包括:1 个符号位,11 个指数位,52 个尾数位】
complex_ complex128: 【类型的简写,即 128 位复数】
complex64 :【复数,表示双 32 位浮点数(实数部分和虚数部分)】
complex128 :【复数,表示双 64 位浮点数(实数部分和虚数部分)】
''' # numpy 的数值类型实际上是 dtype 对象的实例,并对应唯一的字符,包括 np.bool\_,np.int32,np.float32,等等。 ''' # Numpy 类型对象: ''' dtype 对象是使用以下语法构造的: numpy.dtype(object, align, copy) object - 要转换为的数据类型对象 align - 如果为 true,填充字段使其类似 C 的结构体。 copy - 复制 dtype 对象 ,如果为 false,则是对内置数据类型对象的引用 ''' # 1: 使用标量类型 import numpy as np lxw = np.dtype(np.int32) print(lxw) print() # 2: int8, int16, int32, int64 四种数据类型可以使用字符串 'i1', 'i2','i4','i8' 代替 import numpy as np lxw2 = np.dtype('i8') # int64 print(lxw2) print() # 3: 字节顺序标注 import numpy as np lxw3 = np.dtype('<i4') # int32 print(lxw3) print() # 4: 首先创建结构化数据类型 import numpy as np lxw4 = np.dtype([('age', np.int8)]) # i1 print(lxw4) print() # 5: 将数据类型应用于 ndarray 对象 import numpy as np lxw5 = np.dtype([('age', np.int32)]) a = np.array([(10,), (20,), (30,)], dtype=lxw5) print(a) print() # 6: 类型字段名可以用于存取实际的 age 列 import numpy as np lxw6 = np.dtype([('age', np.int64)]) a = np.array([(10,), (20,), (30,)], dtype=lxw6) print(a['age']) print() # 7: 定义一个结构化数据类型 student,包含字符串字段 name,整数字段 age,及浮点字段 marks,并将这个 dtype 应用到 ndarray 对象 import numpy as np student = np.dtype([('name', 'S20'), ('age', 'i2'), ('marks', 'f4')]) print(student) # 运行结果:[('name', 'S20'), ('age', '<i2'), ('marks', '<f4')] print() # 8: import numpy as np student2 = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')]) lxw = np.array([('lxw', 21, 52), ('cw', 22, 58)], dtype=student2) print(lxw) # 运行结果:[(b'lxw', 21, 52.) (b'cw', 22, 58.)] # 每个内建类型都有一个唯一定义它的字符代码,如下: ''' 字符 对应类型 b 布尔型 i.csv (有符号) 整型 u 无符号整型 integer f 浮点型 c 复数浮点型 m timedelta(时间间隔) M datetime(日期时间) O (Python) 对象 S, a (byte-)字符串 U Unicode V 原始数据 (void) '''
在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。
比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。
# -\*- coding = utf-8 -\*- # @Time : 2022/6/28 16:52 # @Author : lxw\_pro # @File : Numpy-数组属性-4.py # @Software : PyCharm # NumPy 的数组中比较重要 ndarray 对象属性有: ''' 属性 说明 ndarray.ndim 秩,即轴的数量或维度的数量 ndarray.shape 数组的维度,对于矩阵,n 行 m 列 ndarray.size 数组元素的总个数,相当于 .shape 中 n\*m 的值 ndarray.dtype ndarray 对象的元素类型 ndarray.itemsize ndarray 对象中每个元素的大小,以字节为单位 ndarray.flags ndarray 对象的内存信息 ndarray.real ndarray元素的实部 ndarray.imag ndarray 元素的虚部 ndarray.data 包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。 ''' # ndarray.ndim # ndarray.ndim 用于返回数组的维数,等于秩。 import numpy as np lxw = np.arange(36) print(lxw.ndim) # a 现只有一个维度 # 现调整其大小 a = lxw.reshape(2, 6, 3) # 现在拥有三个维度 print(a.ndim) print() # ndarray.shape # ndarray.shape 表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即 ndim 属性(秩)。比如,一个二维数组,其维度表示"行数"和"列数"。 # ndarray.shape 也可以用于调整数组大小。 import numpy as np lxw2 = np.array([[169, 175, 165], [52, 55, 50]]) print(lxw2.shape) # shape: 数组的维度 print() # 调整数组大小: import numpy as np lxw3 = np.array([[123, 234, 345], [456, 567, 789]]) lxw3.shape = (3, 2) print(lxw3) print() # NumPy 也提供了 reshape 函数来调整数组大小: import numpy as np lxw4 = np.array([[23, 543, 65], [32, 54, 76]]) c = lxw4.reshape(2, 3) # reshape: 调整数组大小 print(c) print() # ndarray.itemsize # ndarray.itemsize 以字节的形式返回数组中每一个元素的大小。 # 例如,一个元素类型为 float64 的数组 itemsize 属性值为 8(float64 占用 64 个 bits, # 每个字节长度为 8,所以 64/8,占用 8 个字节),又如,一个元素类型为 complex32 的数组 item 属性为 4(32/8) import numpy as np # 数组的 dtype 为 int8(一个字节) x = np.array([1, 2, 3, 4, 5], dtype=np.int8) print(x.itemsize) # 数组的dtypy现在为float64(八个字节) y = np.array([1, 2, 3, 4, 5], dtype=np.float64) print(y.itemsize) # itemsize: 占用字节个数 # 拓展: # 整体转化为整数型 print(np.array([3.5, 6.6, 8.9], dtype=int)) # 设置copy参数,默认为True a = np.array([2, 5, 6, 8, 9]) b = np.array(a) # 复制a print(b) # 控制台打印b print(f'a: {id(a)}, b: {id(b)}') # 可打印出a和b的内存地址 print('='\*20) # 类似于列表的引用赋值 b = a print(f'a: {id(a)}, b: {id(b)}') # 创建一个矩阵 lxw5 = np.mat([1, 2, 3, 4, 5]) print(type(lxw5)) # 矩阵类型: <class 'numpy.matrix'> # 复制出副本,并保持原类型 yy = np.array(lxw5, subok=True) print(type(yy)) # 只复制副本,不管其类型 by = np.array(lxw5, subok=False) # False: 使用数组的数据类型 print(type(by)) print(id(yy), id(by)) print('='\*20) # 使用数组的copy()方法: c = np.array([2, 5, 6, 2]) cp = c.copy() print(id(c), id(cp)) print() # ndarray.flags ''' ndarray.flags 返回 ndarray 对象的内存信息,包含以下属性: 属性 描述 C\_CONTIGUOUS (C) 数据是在一个单一的C风格的连续段中 F\_CONTIGUOUS (F) 数据是在一个单一的Fortran风格的连续段中 OWNDATA (O) 数组拥有它所使用的内存或从另一个对象中借用它 WRITEABLE (W) 数据区域可以被写入,将该值设置为 False,则数据为只读 ALIGNED (A) 数据和所有元素都适当地对齐到硬件上 UPDATEIFCOPY (U) 这个数组是其它数组的一个副本,当这个数组被释放时,原数组的内容将被更新 ''' import numpy as np lxw4 = np.array([1, 3, 5, 6, 7]) print(lxw4.flags) # flags: 其内存信息
学习来源于哔哩哔哩和菜鸟教程
学习可自行点击:【菜鸟教程】
【2022B站最新最好的数据分析课程推荐】
当然,做这些的前提是首先把文件准备好
文件太长,故只截取了部分,当然,此文件可自行弄类似的也可以!
在进行数据分析时,经常需要按照一定条件创造新的数据列,然后再进一步分析
# -\*- coding = utf-8 -\*- # @Time : 2022/6/28 16:20 # @Author : lxw\_pro # @File : pandas新增数据列.py # @Software : PyCharm # 1: import pandas as pd # 读取数据 lxw = pd.read_csv('sites.csv') # print(lxw.head()) df = pd.DataFrame(lxw) # print(df) df['lrl'] = df['lrl'].map(lambda x: x.rstrip('%')) # print(df) df.loc[:, 'jf'] = df['yye'] - df['sku\_cost\_prc'] # 返回的是Series # print(df.head()) # 2: def get\_cha(n): if n['yye'] > 5: return '高价' elif n['yye'] < 2: return '低价' else: return '正常价' df.loc[:, 'yye\_type'] = df.apply(get_cha, axis=1) # print(df.head()) print(df['yye\_type'].value_counts()) # 3: # 可同时添加多个新列 print(df.assign( yye_bh=lambda x: x['yye']\*2-3, sl_zj=lambda x: x['sku\_cnt']\*6 ).head(10)) # 4: # 按条件先选择数据,然后对这部分数据赋值新列 # 先创建空列 df['zyye\_type'] = '' df.loc[df['yye'] - df['sku\_cnt']>8, 'zyye\_type'] = '高' df.loc[df['yye'] - df['sku\_cnt'] <= 8, 'zyye\_type'] = '低' print(df.head())
下面分别是每个小问对应运行效果:
1:
2:
3:
4:
# Pandas数据统计函数 ''' 1-汇总类统计 2-唯一去重和按值计数 3-相关系数和协方差 ''' import pandas as pd lxw = pd.read_csv('nba.csv') # print(lxw.head(3)) # 1: # 一下子提取所有数字列统计结果 print(lxw.describe()) # 查看单个Series的数据 print(lxw['Age'].mean()) # 年龄最大 print(lxw['Age'].max()) # 体重最轻 print(lxw['Weight'].min()) # 2: # 2-1 唯一性去重【一般不用于数值项,而是枚举、分类项】 print(lxw['Height'].unique()) print(lxw['Team'].unique()) # 2-2 按值计算 print(lxw['Age'].value_counts()) print(lxw['Team'].value_counts()) # 3: # 应用:股票涨跌、产品销量波动等等 ''' 【来自知乎】 对于两个变量X、Y: 1-协方差:衡量同向程度程度,如果协方差为正,说明X、Y同向变化,协方差越大说明同向程度越高; 如果协方差为负,说明X、Y反向运动,协方差越小说明方向程度越高。 2-相关系数:衡量相似度程度,当他们的相关系数为1时,说明两个变量变化时的正向相似度最大, 当相关系数为-1,说明两个变化时的反向相似度最大。 ''' # 协方差矩阵: print(lxw.cov()) # 相关系数矩阵: print(lxw.corr()) # 单独查看年龄和体重的相关系数 print(lxw['Age'].corr(lxw['Weight'])) # Age和Salary的相关系数 print(lxw['Age'].corr(lxw['Salary'])) # 注意看括号内的相减 print(lxw['Age'].corr(lxw['Salary']-lxw['Weight']))
1:
2-1:
部分2-2:
3:
# -\*- coding = utf-8 -\*- # @Time : 2022/6/28 20:00 # @Author : lxw\_pro # @File : pandas缺失值处理-7.py # @Software : PyCharm # Pandas对缺失值的处理 ''' 函数用法: 1-isnull和notnull: 检测是否有控制,可用于dataframe和series 2-dropna: 丢弃、删除缺失值 2-1 axis: 删除行还是列,{0 or 'index', 1 or 'columns'}, default() 2-2 how: 如果等于any, 则任何值都为空,都删除;如果等于all所有值都为空,才删除 2-3 inplace: 如果为True,则修改当前dataframe,否则返回新的dataframe 2-4 value: 用于填充的值,可以是单个值,或者字典(key是列名,value是值) 2-5 method: 等于ffill使用前一个不为空的值填充forword fill;等于bfill使用后一个不为空的值填充backword fill 2-6 axis: 按行还是按列填充,{0 or "index", 1 or "columns"} 2-7 inplace: 如果为True则修改当前dataframe,否则返回新的dataframe ''' # 特殊Excel的读取、清洗、处理 import pandas as pd # 1: 读取excel时,忽略前几个空行 stu = pd.read_excel("Score表.xlsx", skiprows=14) # skiprows: 控制在几行以下 print(stu) # 2: 检测空值 print(stu.isnull()) print(stu['成绩'].isnull()) print(stu['成绩'].notnull()) # 筛选没有空成绩的所有行 print(stu.loc[stu['成绩'].notnull(), :]) # 3: 删除全是空值的列: # axis: 删除行还是列,{0 or 'index', 1 or 'columns'}, default() # how: 如果等于any, 则任何值都为空,都删除;如果等于all所有值都为空,才删除 # inplace: 如果为True则修改当前dataframe,否则返回新的dataframe stu.dropna(axis="columns", how="all", inplace=True) print(stu) # 4: 删除全是空值的行: stu.dropna(axis="index", how="all", inplace=True) print(stu) # 5: 将成绩列为空的填充为0分: stu.fillna({"成绩": 0}) print(stu) # 同上: stu.loc[:, '成绩'] = stu['成绩'].fillna(0) print(stu) # 6: 将姓名的缺失值填充【使用前面的有效值填充,用ffill: forward fill】 stu.loc[:, '姓名'] = stu['姓名'].fillna(method='ffill') **网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。** **需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)**  **一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!** aframe stu.dropna(axis="columns", how="all", inplace=True) print(stu) # 4: 删除全是空值的行: stu.dropna(axis="index", how="all", inplace=True) print(stu) # 5: 将成绩列为空的填充为0分: stu.fillna({"成绩": 0}) print(stu) # 同上: stu.loc[:, '成绩'] = stu['成绩'].fillna(0) print(stu) # 6: 将姓名的缺失值填充【使用前面的有效值填充,用ffill: forward fill】 stu.loc[:, '姓名'] = stu['姓名'].fillna(method='ffill') **网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。** **需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注大数据)** [外链图片转存中...(img-twGczALx-1713359452675)] **一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。