当前位置:   article > 正文

TSM: Temporal Shift Module for Efficient Video Understanding

tsm: temporal shift module for efficient video understanding. in: ieee inte

TSM: Temporal Shift Module for Efficient Video Understanding[Website][arXiv][Demo]

  1. @inproceedings{lin2019tsm,
  2. title={TSM: Temporal Shift Module for Efficient Video Understanding},
  3. author={Lin, Ji and Gan, Chuang and Han, Song},
  4. booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  5. year={2019}
  6. }

[NEW!]We have released the pre-trainedoptical flowmodel on Kinetics. We believe the pre-trained weight will help the training of two-stream models on other datasets.

[NEW!]We have released the code of online hand gesture recognition on NVIDIA Jeston Nano. It can achieve real-time recognition at only 8 watts. Seeonline_demofolder for the details.[Full Video]

 

Overview

We release the PyTorch code of theTemporal Shift Module.

 

Content

Prerequisites

The code is built with following libraries:

For video data pre-processing, you may needffmpeg.

Data Preparation

We need to first extract videos into frames for fast reading. Please refer toTSNrepo for the detailed guide of data pre-processing.

We have successfully trained onKinetics,UCF101,HMDB51,

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/空白诗007/article/detail/985353
推荐阅读
相关标签
  

闽ICP备14008679号