赞
踩
随着人工智能技术的不断进步,音频语言模型(Audio-Language Models)在人机交互领域变得越来越重要。然而,由于缺乏能够处理多样化音频类型和任务的预训练模型,该领域的进展受到了限制。为了克服这一挑战,研究者们开发了Qwen-Audio模型,这是一个能够覆盖超过30种任务和各种音频类型的统一大规模音语预训练模型。
Qwen-Audio模型通过扩展Qwen-7B语言模型,连接单一音频编码器,有效地感知音频信号。与以往主要处理特定音频类型(如人类语音)或专注于特定任务(如语音识别和字幕生成)的模型不同,Qwen-Audio在多任务学习框架中进行了扩展,涵盖了多种语言和音频类型,以促进通用音频理解能力的发展。
Qwen-Audio模型的核心架构包括一个音频编码器和一个大语言模型(LLM)。音频编码器基于Whisper-large-v2模型初始化,能够处理各种类型的音频,如人类语音、自然声音、音乐和歌曲。该编码器将原始音频波形转换为80通道的melspectrogram,并通过池化层降低音频表示的长度,使得编码器输出的每一帧大约对应原始音频信号的40毫秒段。
大型语言模型部分则初始化自Qwen-7B模型,这是一个包含7.7亿参数的32层Transformer解码器模型。Qwen-Audio的训练目标是最大化给定音频表示和之前文本序列的下一个文本标记概率。
为了在多任务学习中有效地训练Qwen-Audio,研究者提出了一个多任务训练格式框架。该框架通过一系列层次化标签来指导解码器,包括转录标签、音频语言标签、任务标签、文本语言标签、时间戳标签和输出指令。这样的设计不仅促进了类似任务之间的知识共享,还通过区分不同任务和输出格式来避免模型的多对一映射问题。
Qwen-Audio在不需要任何任务特定微调的情况下,在多个基准测试任务上取得了令人印象深刻的性能,超越了其同类模型。特别是在Aishell1、cochlscene、ClothoAQA和VocalSound测试集上,Qwen-Audio实现了最先进的性能。
基于Qwen-Audio的能力,研究者进一步开发了Qwen-Audio-Chat,它允许来自各种音频和文本输入的输入,支持多轮对话,并支持各种以音频为中心的场景。Qwen-Audio-Chat 的目标是创建一个能够理解音频和文本输入、并支持多轮对话的模型。该模型旨在模拟人类对话的方式,能够根据用户的指令进行有效的互动。
<im_start>
和 <im_end>
),以便于对话的终止。Qwen-Audio系列模型展示了作为通用音频理解模型的潜力。通过大规模的端到端训练,Qwen-Audio成功地弥合了音频和文本模态之间的差距,并在多种任务上展现了卓越的性能。
[1]论文链接:https://arxiv.org/pdf/2311.07919.pdf
[2]开源代码:https://github.com/QwenLM/Qwen-Audio
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。