赞
踩
原文链接:https://blog.csdn.net/qq_39303465/article/details/79176075
1.监督式学习
监督式学习算法包括一个目标变量(也就是因变量)和用来预测目标变量的预测变量(相当于自变量).通过这些变量,我们可以搭建一个模型,从而对于一个自变量,我们可以得到对应的因变量.重复训练这个模型,直到它能在训练数据集上达到理想的准确率
属于监督式学习的算法有:回归模型,决策树,随机森林,K近邻算法,逻辑回归等算法
2.无监督式算法
无监督式学习不同的是,无监督学习中我们没有需要预测或估计的因变量.无监督式学习是用来对总体对象进行分类的.它在根据某一指标将客户分类上有广泛作用.
属于无监督式学习的算法有:关联规则,K-means聚类算法等
3.强化学习
这个算法可以训练程序作出某一决定,程序在某一情况下尝试所有的可能行为,记录不同行动的结果并试着找出最好的一次尝试来做决定
属于强化学习的算法有:马尔可夫决策过程
1.线性回归 (Linear Regression)
2.逻辑回归 (Logistic Regression)
3.决策树 (Decision Tree)
4.支持向量机(SVM)
5.朴素贝叶斯 (Naive Bayes)
6.K邻近算法(KNN)
7.K-均值算法(K-means)
8.随机森林 (Random Forest)
9.降低维度算法(Dimensionality Reduction Algorithms)
10.Gradient Boost和Adaboost
1.线性回归
线性回归是利用连续性变量来估计实际数值(比如房价等),我们通过线性回归算法找出自变量和因变量的最佳线性关系,图形上可以确定一条最佳的直线.这条最佳直线就是回归线.线性回归关系可以用Y=ax+b表示.
在这个Y=ax+b这个公式里:
Y=因变量 a =斜率 x=自变量 b=截距 a和b可以通过最下化因变量误差的平方和得到(最小二乘法)
给大家画一个图,方便理解,下图用的线性回归方程是Y=0.28x+13.9.通过这个方程,就可以根据一个人的身高预测他的体重信息.
线性回归还分为:一元线性回归和多元线性回归.很明显一元只有一个自变量,多元有多个自变量.
拟合多元线性回归的时候,可以利用多项式回归或曲线回归
Import Library from sklearn import linear_model x_train=input_variables_values_training_datasets y_train=target_variables_values_training_datasets x_test=input_variables_values_test_datasets # Create linear regression object linear = linear_model.LinearRegression() # Train the model using the training sets and check score linear.fit(x_train, y_train) linear.score(x_train, y_train) #Equation coefficient and Intercept print('Coefficient: \n', linear.coef_) print('Intercept: \n', linear.intercept_) #Predict Output predicted= linear.predict(x_test)
2.逻辑回归
逻辑回归最早听说的时候以为是回归算法,其实是一个分类算法,不要让他的名字迷惑了.通常利用已知的自变量来预测一个离散型因变量的值(通常是二分类的值).简单来讲,他就是通过拟合一个Lg来预测一个时间发生的概率,所以他预测的是一个概率值,并且这个值是在0-1之间的,不可能出这个范围,除非你遇到了一个假的逻辑回归!
同样用例子来理解:
假设你的一个朋友让你回答一道题。可能的结果只有两种:你答对了或没有答对。为了研究你最擅长的题目领域,你做了各种领域的题目。那么这个研究的结果可能是这样的:如果是一道十年级的三角函数题,你有70%的可能性能解出它。但如果是一道五年级的历史题,你会的概率可能只有30%。逻辑回归就是给你这样的概率结果。
最终事件的预测变量的线性组合就是
odds= p/ (1-p) = probability of event occurrence / probability of not event occurrence
ln(odds) = ln(
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。