当前位置:   article > 正文

使用pyannote.audio进行语音分离和说话人识别_pyannote-audio

pyannote-audio

https://github.com/pyannote/pyannote-audio

pip install pyannote.audio
  • 1

场景:

  • 一段音频中有多个说话人,将不同的人说的话分离出来
  • 已知一些人的语音特征,跟分离出来的片段,分别求特征的余弦距离,余弦距离最小的作为说话的人
# _*_ coding: utf-8 _*_
# @Time : 2024/3/16 10:47
# @Author : Michael
# @File : spearker_rec.py
# @desc :
import torch
from pyannote.audio import Model, Pipeline, Inference
from pyannote.core import Segment
from scipy.spatial.distance import cosine


def extract_speaker_embedding(pipeline, audio_file, speaker_label):
    diarization = pipeline(audio_file)
    speaker_embedding = None
    for turn, _, label in diarization.itertracks(yield_label=True):
        if label == speaker_label:
            segment = Segment(turn.start, turn.end)
            speaker_embedding = inference.crop(audio_file, segment)
            break
    return speaker_embedding

# 对于给定的音频,提取声纹特征并与人库中的声纹进行比较
def recognize_speaker(pipeline, audio_file):
    diarization = pipeline(audio_file)
    speaker_turns = []
    for turn, _, speaker_label in diarization.itertracks(yield_label=True):
        # 提取切片的声纹特征
        embedding = inference.crop(audio_file, turn)  
        distances = {}
        for speaker, embeddings in speaker_embeddings.items():  
	        # 计算与已知说话人的声纹特征的余弦距离
            distances[speaker] = min([cosine(embedding, e) for e in embeddings])
        # 选择距离最小的说话人
        recognized_speaker = min(distances, key=distances.get)  
        speaker_turns.append((turn, recognized_speaker))  
        # 记录说话人的时间段和余弦距离最小的预测说话人
    return speaker_turns

if __name__ == "__main__":
    token = "hf_***"  # 请替换为您的Hugging Face Token

    # 加载声音分离识别模型
    pipeline = Pipeline.from_pretrained(
        "pyannote/speaker-diarization-3.1",
        use_auth_token=token,  # 在项目页面agree使用协议,并获取 Hugging Face Token
        # cache_dir="/home/huggingface/hub/models--pyannote--speaker-diarization-3.1/"
    )

    # 加载声纹嵌入模型
    embed_model = Model.from_pretrained("pyannote/embedding", use_auth_token=token)
    inference = Inference(embed_model, window="whole")

    # pipeline.to(torch.device("cuda"))

    # 假设您已经有一个包含不同人声的音频文件集,以及对应的人
    audio_files = {
        "mick": "mick.wav",  # mick的音频
        "moon": "moon.wav",  # moon的音频
    }
    speaker_embeddings = {}
    for speaker, audio_file in audio_files.items():
        diarization = pipeline(audio_file)
        for turn, _, speaker_label in diarization.itertracks(yield_label=True):
            embedding = extract_speaker_embedding(pipeline, audio_file, speaker_label)
            # 获取原始已知说话人的声纹特征
            speaker_embeddings.setdefault(speaker, []).append(embedding)

    # 给定新的未知人物的音频文件
    given_audio_file = "2_voice.wav"  # 前半部分是 mick 说话,后半部分是 moon 说话

    # 识别给定音频中的说话人
    recognized_speakers = recognize_speaker(pipeline, given_audio_file)
    print("Recognized speakers in the given audio:")
    for turn, speaker in recognized_speakers:
        print(f"Speaker {speaker} spoke between {turn.start:.2f}s and {turn.end:.2f}s")

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76

输出:

Model was trained with pyannote.audio 0.0.1, yours is 3.1.1. Bad things might happen unless you revert pyannote.audio to 0.x.
Model was trained with torch 1.8.1+cu102, yours is 2.2.1+cpu. Bad things might happen unless you revert torch to 1.x.

Recognized speakers in the given audio:
Speaker mick spoke between 0.57s and 1.67s
Speaker moon spoke between 2.47s and 2.81s
Speaker moon spoke between 3.08s and 4.47s
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

输出提示环境不太一样,需要注意一下

本文内容由网友自发贡献,转载请注明出处:https://www.wpsshop.cn/w/神奇cpp/article/detail/916462
推荐阅读
相关标签
  

闽ICP备14008679号