赞
踩
本小节的主要任务即是将wiki数据集转成BERT输入序列,具体的任务包括:
_get_nsp_data_from_paragraph
函数_get_nsp_data_from_paragraph
_get_mlm_data_from_tokens
函数_get_mlm_data_from_tokens
函数特殊词元< mask >
load_data_wiki
函数train_iter
与vocab
"""较小的语料库WikiText-2""" import os import random import torch from d2l import torch as d2l #@save d2l.DATA_HUB['wikitext-2'] = ( 'https://s3.amazonaws.com/research.metamind.io/wikitext/' 'wikitext-2-v1.zip', '3c914d17d80b1459be871a5039ac23e752a53cbe') """仅使用句号作为分隔符来拆分句子""" #@save def _read_wiki(data_dir): file_name = os.path.join(data_dir, 'wiki.train.tokens') with open(file_name, 'r',encoding='utf-8') as f: lines = f.readlines() # 大写字母转换为小写字母 paragraphs = [line.strip().lower().split(' . ') for line in lines if len(line.split(' . ')) >= 2] random.shuffle(paragraphs) return paragraphs # 生成下一句预测任务的数据--->用于:_get_nsp_data_from_paragraph函数 #@save def _get_next_sentence(sentence, next_sentence, paragraphs): if random.random() < 0.5: is_next = True else: # paragraphs是三重列表的嵌套 next_sentence = random.choice(random.choice(paragraphs)) is_next = False return sentence, next_sentence, is_next """ 下面的函数通过调用_get_next_sentence函数从输入paragraph生成用于下一句预测的训练样本。 这里paragraph是句子列表,其中每个句子都是词元列表。自变量max_len指定预训练期间的BERT输入序列的最大长度。 """ #@save def _get_nsp_data_from_paragraph(paragraph, paragraphs, vocab, max_len): nsp_data_from_paragraph = [] """nsp_data_from_paragraph中的每一个元素都是(tokens,segments,is_next) (词元,句子属性,是否是下一个句子) """ for i in range(len(paragraph) - 1): tokens_a, tokens_b, is_next = _get_next_sentence( paragraph[i], paragraph[i + 1], paragraphs) # 考虑1个'<cls>'词元和2个'<sep>'词元 if len(tokens_a) + len(tokens_b) + 3 > max_len: continue tokens, segments = d2l.get_tokens_and_segments(tokens_a, tokens_b) nsp_data_from_paragraph.append((tokens, segments, is_next)) return nsp_data_from_paragraph # 生成遮蔽语言模型任务的数据---》将生成的tokens的一部分随机换成masked的tokens # -》》用于_get_mlm_data_from_tokens函数 """ 输入: 1、tokens:表示BERT输入序列的词元的列表 2、candidate_pred_positions:不包括特殊词元的BERT输入序列的词元索引的列表(特殊词元在遮蔽语言模型任务中不被预测) 3、num_mlm_preds:指示预测的数量(选择15%要预测的随机词元) """ #@save def _replace_mlm_tokens(tokens, candidate_pred_positions, num_mlm_preds, vocab): # 为遮蔽语言模型的输入创建新的词元副本,其中输入可能包含替换的“<mask>”或随机词元 mlm_input_tokens = [token for token in tokens] pred_positions_and_labels = [] # 打乱后用于在遮蔽语言模型任务中获取15%的随机词元进行预测 random.shuffle(candidate_pred_positions) for mlm_pred_position in candidate_pred_positions: # 如果生成的预测数量已经超过了最大的预测值 15% 就停止 if len(pred_positions_and_labels) >= num_mlm_preds: break masked_token = None # 80%的时间:将词替换为“<mask>”词元 if random.random() < 0.8: masked_token = '<mask>' else: # 10%的时间:保持词不变 if random.random() < 0.5: masked_token = tokens[mlm_pred_position] # 10%的时间:用随机词替换该词 else: masked_token = random.choice(vocab.idx_to_token) # 将masked的位置填入随机词元或保持不变或<mask> mlm_input_tokens[mlm_pred_position] = masked_token pred_positions_and_labels.append( (mlm_pred_position, tokens[mlm_pred_position])) return mlm_input_tokens, pred_positions_and_labels """ 输入:BERT输入序列的tokens 输出: 1、输入词元的索引【词元已经被masked】 2、发生预测的词元索引 3、发生预测的标签索引 """ """当然,会有相关的词元会被masked""" #@save def _get_mlm_data_from_tokens(tokens, vocab): candidate_pred_positions = [] # tokens是一个字符串列表 for i, token in enumerate(tokens): # 在遮蔽语言模型任务中不会预测特殊词元 if token in ['<cls>', '<sep>']: continue candidate_pred_positions.append(i) # 遮蔽语言模型任务中预测15%的随机词元 num_mlm_preds = max(1, round(len(tokens) * 0.15)) mlm_input_tokens, pred_positions_and_labels = _replace_mlm_tokens( tokens, candidate_pred_positions, num_mlm_preds, vocab) pred_positions_and_labels = sorted(pred_positions_and_labels, key=lambda x: x[0]) pred_positions = [v[0] for v in pred_positions_and_labels] mlm_pred_labels = [v[1] for v in pred_positions_and_labels] return vocab[mlm_input_tokens], pred_positions, vocab[mlm_pred_labels] """ 将特殊的“<mask>”词元附加到输入 """ #@save def _pad_bert_inputs(examples, max_len, vocab): max_num_mlm_preds = round(max_len * 0.15) all_token_ids, all_segments, valid_lens, = [], [], [] all_pred_positions, all_mlm_weights, all_mlm_labels = [], [], [] nsp_labels = [] for (token_ids, pred_positions, mlm_pred_label_ids, segments, is_next) in examples: # 如果长度不够会加入<pad> all_token_ids.append(torch.tensor(token_ids + [vocab['<pad>']] * ( max_len - len(token_ids)), dtype=torch.long)) # 而且所有的<pad>的segments都是0 all_segments.append(torch.tensor(segments + [0] * ( max_len - len(segments)), dtype=torch.long)) # valid_lens不包括'<pad>'的计数 只是对token_ids计数,并不是对all_token_ids计数 valid_lens.append(torch.tensor(len(token_ids), dtype=torch.float32)) all_pred_positions.append(torch.tensor(pred_positions + [0] * ( max_num_mlm_preds - len(pred_positions)), dtype=torch.long)) # 填充词元的预测将通过乘以0权重在损失中过滤掉 all_mlm_weights.append( torch.tensor([1.0] * len(mlm_pred_label_ids) + [0.0] * ( max_num_mlm_preds - len(pred_positions)), dtype=torch.float32)) all_mlm_labels.append(torch.tensor(mlm_pred_label_ids + [0] * ( max_num_mlm_preds - len(mlm_pred_label_ids)), dtype=torch.long)) nsp_labels.append(torch.tensor(is_next, dtype=torch.long)) return (all_token_ids, all_segments, valid_lens, all_pred_positions, all_mlm_weights, all_mlm_labels, nsp_labels) #@save class _WikiTextDataset(torch.utils.data.Dataset): def __init__(self, paragraphs, max_len): # 输入paragraphs[i]是代表段落的句子字符串列表; # 而输出paragraphs[i]是代表段落的句子列表,其中每个句子都是词元列表 paragraphs = [d2l.tokenize( paragraph, token='word') for paragraph in paragraphs] sentences = [sentence for paragraph in paragraphs for sentence in paragraph] self.vocab = d2l.Vocab(sentences, min_freq=5, reserved_tokens=[ '<pad>', '<mask>', '<cls>', '<sep>']) # 获取下一句子预测任务的数据 examples = [] for paragraph in paragraphs: examples.extend(_get_nsp_data_from_paragraph( paragraph, paragraphs, self.vocab, max_len)) # 获取遮蔽语言模型任务的数据 examples = [(_get_mlm_data_from_tokens(tokens, self.vocab) + (segments, is_next)) for tokens, segments, is_next in examples] # 填充输入 (self.all_token_ids, self.all_segments, self.valid_lens, self.all_pred_positions, self.all_mlm_weights, self.all_mlm_labels, self.nsp_labels) = _pad_bert_inputs( examples, max_len, self.vocab) def __getitem__(self, idx): return (self.all_token_ids[idx], self.all_segments[idx], self.valid_lens[idx], self.all_pred_positions[idx], self.all_mlm_weights[idx], self.all_mlm_labels[idx], self.nsp_labels[idx]) def __len__(self): return len(self.all_token_ids) """下载并生成WikiText-2数据集,并从中生成预训练样本""" #@save def load_data_wiki(batch_size, max_len): """加载WikiText-2数据集""" num_workers = d2l.get_dataloader_workers() data_dir = d2l.download_extract('wikitext-2', 'wikitext-2') paragraphs = _read_wiki(data_dir) train_set = _WikiTextDataset(paragraphs, max_len) train_iter = torch.utils.data.DataLoader(train_set, batch_size, shuffle=True, num_workers=num_workers) return train_iter, train_set.vocab """将批量大小设置为512,将BERT输入序列的最大长度设置为64,我们打印出小批量的BERT预训练样本的形状。""" """同时会有(64*0.15)的遮蔽语言模型需要预测的位置""" batch_size, max_len = 512, 64 train_iter, vocab = load_data_wiki(batch_size, max_len) if __name__=='__main__': for (tokens_X, segments_X, valid_lens_x, pred_positions_X, mlm_weights_X, mlm_Y, nsp_y) in train_iter: print(tokens_X.shape, segments_X.shape, valid_lens_x.shape, pred_positions_X.shape, mlm_weights_X.shape, mlm_Y.shape, nsp_y.shape) break
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。