当前位置:   article > 正文

Realsense D435i 相机和 IMU 标定_d435i imu标定

d435i imu标定

一、IMU 标定

使用 imu_utils 功能包标定 IMU,由于imu_utils功能包的编译依赖于code_utils,需要先编译code_utils,主要参考

相机与IMU联合标定_熊猫飞天的博客-CSDN博客

Ubuntu20.04编译并运行imu_utils,并且标定IMU_学无止境的小龟的博客-CSDN博客

1.1 编译 code_utils

创建工作空间

  1. mkdir -p ~/catkin_ws/src/imu_calib/src/
  2. cd ~/catkin_ws/src/imu_calib/src
  3. git clone https://github.com/gaowenliang/code_utils.git

1.1.1 修改 CMakeLists.txt 文件

修改 set(CMAKE_CXX_FLAGS "-std=c++11") 为 set(CMAKE_CXX_FLAGS "-std=c++14")

修改 #include "backward.hpp" 为 include “code_utils/backward.hpp”

 如果安装的是 OpenCV 4.x.x 则需要修改一些全局变量的名称,终端输入

  1. cd ~/catkin_ws/src/imu_calib/src/code_utils/
  2. sed -i 's/CV_LOAD_IMAGE_UNCHANGED/cv::IMREAD_UNCHANGED/g' `grep CV_LOAD_IMAGE_UNCHANGED -rl ./`
  3. sed -i 's/CV_LOAD_IMAGE_GRAYSCALE/cv::IMREAD_GRAYSCALE/g' `grep CV_LOAD_IMAGE_GRAYSCALE -rl ./`
  4. sed -i 's/CV_MINMAX/cv::NORM_MINMAX/g' `grep CV_MINMAX -rl ./`

安装依赖

sudo apt-get install libdw-dev

编译 code_utils

  1. mkdir -p ~/catkin_ws/src/imu_calib/
  2. catkin_make

1.2 编译 imu_utils

  1. mkdir -p ~/catkin_ws/src/imu_calib/src/
  2. cd ~/catkin_ws/src/imu_calib/src
  3. git clone https://github.com/gaowenliang/imu_utils.git

修改 CMakeLists.txt 文件

修改 set(CMAKE_CXX_FLAGS "-std=c++11") 为 set(CMAKE_CXX_FLAGS "-std=c++14")

修改 imu_an.cpp 文件

添加头文件:#include <fstream>

编译 imu_utils

  1. mkdir -p ~/catkin_ws/src/imu_calib/
  2. catkin_make

1.3 录制 imu 数据集

创建录制的数据保存路径

  1. mkdir ~/catkin_ws/src/imu_calib/bag/
  2. cd imu_calib/bag/

启动相应的设备开始发布 imu 数据,d435i 相机可以启用 realsense-ros 发布相机 imu 数据

roslaunch realsense2_camera rs_camera.launch

静止情况下采集IMU的数据,并录制为ROS包,采集的时间 2小时 左右

rosbag record /camera/imu -O ~/catkin_ws/src/imu_calib/bag/imu.bag

在 ~/imu_calib/src/imu_utils/launch 路径下创建如下 d435i.launch 文件

  1. <launch>
  2. <node pkg="imu_utils" type="imu_an" name="imu_an" output="screen">
  3. <!--订阅的imu话题-->
  4. <param name="imu_topic" type="string" value= "/camera/imu"/>
  5. <!--标定结果的名称-->
  6. <param name="imu_name" type="string" value= "d435i"/>
  7. <!--标定结果存放路径-->
  8. <param name="data_save_path" type="string" value= "$(find imu_utils)/../../bag/d435i/"/>
  9. <!--数据录制时间-min 120分钟 可以自行修改 一般要大于60-->
  10. <param name="max_time_min" type="int" value= "120"/>
  11. <!--imu采样频率,设置为400-->
  12. <param name="max_cluster" type="int" value= "400"/>
  13. </node>
  14. </launch>

在 imu 数据采集完毕后(录制时间两小时左右),启动上述 launch 文件标定 imu 内参

  1. roslaunch imu_utils d435i.launch
  2. rosbag play -r 200 ~/catkin_ws/src/imu_calib/bag/imu.bag

数据包播放结束之后,在 ~/catkin_ws/src/imu_calib/bag/ 这个文件夹下会出现一系列的参数文件,

打开 d435i_imu_param.yaml 这个文件,会看到计算出来的噪声和随机游走的系数值

至此,IMU的内参标定和记录结束。

二、相机标定

2.1 编译 kalibr

使用 kalibr 功能包标定相机,编译 kalibr,主要参考

https://github.com/ethz-asl/kalibr/wiki/installation

创建工作空间并下载源码

  1. mkdir -p ~/catkin_ws/src/kalibr/src/ && cd ~/catkin_ws/src/kalibr/src/
  2. git clone https://github.com/ethz-asl/kalibr.git

编译 kalibr

cd ~/catkin_ws/src/kalibr/ && catkin build -DCMAKE_BUILD_TYPE=Release -j4

2.2 制作标定板

终端输入

  1. source ~/catkin_ws/src/kalibr/devel/setup.bash
  2. cd ~/catkin_ws/src/kalibr/bag/stereo/
  3. rosrun kalibr kalibr_create_target_pdf --type apriltag --nx 6 --ny 6 --tsize 0.022 --tspace 0.3

不论是打印PDF标定还是直接在电脑里面打开PDF标定,都要实际测量一下二维码方格和小方格的的长度,再填到yaml文件里面,

--type apriltag                标定板类型
--nx [NUM_COLS]                列个数
--ny [NUM_ROWS]                行个数
--tsize [TAG_WIDTH_M]          二维码方格长度,单位m
--tspace [TAG_SPACING_PERCENT] 小方格与二维码方格长度比例

新建 april_6x6_A4.yaml 文件,格式参考上面的yaml,内容展示如下:

  1. target_type: 'aprilgrid' #gridtype
  2. tagCols: 6 #number of apriltags
  3. tagRows: 6 #number of apriltags
  4. tagSize: 0.0318 #size of apriltag, edge to edge [m] 要亲自拿尺子量一下
  5. tagSpacing: 0.305 #ratio of space between tags to tagSize

千万要自己量一下 tagSize!!!

2.3 录制数据集

启动相应的设备开始发布 相机 数据,d435i 相机可以启用 realsense-ros 发布相机 imu 数据

roslaunch realsense2_camera rs_camera.launch

kalibr 在处理标定数据的时候要求频率不能太高,官方推荐是4Hz(尽管实际频率不完全准确,但是不影响结果),我们可以使用如下命令来更改topic的频率,实际上是将原来的topic以新的频率转成新的topic, infra1 对应左目相机。

  1. rosrun topic_tools throttle messages /camera/infra1/image_rect_raw 4.0 /infra_left
  2. rosrun topic_tools throttle messages /camera/infra2/image_rect_raw 4.0 /infra_right

创建数据保存路径,并录制双目图像数据

  1. mkdir -p ~/kalibr/bag/stereo/
  2. rosbag record /infra_left /infra_right -O ~/catkin_ws/src/kalibr/bag/stereo/stereo.bag

录制操作参考

Kalibr相机及IMU校准教程(Tutorial: IMU-camera calibration)_哔哩哔哩_bilibili

总结下来就是偏航角左右摆动2次,俯仰角摆动2次,滚转角摆动2次,上下移动2次,左右移动2次,前后移动2次,然后自由移动一段时间,摆动幅度要大一点,让视角变化大一点,但是移动要缓慢一点,同时要保证标定板在2个相机视野内部,整个标定时间要在90s以上更好,但是优化时间会比较长。

2.4 标定

录制完成后使用 kalibr 标定

  1. rosrun kalibr kalibr_calibrate_cameras \
  2. --target /home/lilabws001/catkin_ws/src/kalibr/bag/d435i/stereo/april_6x6_A4.yaml \
  3. --bag /home/lilabws001/catkin_ws/src/kalibr/bag/d435i/stereo/stereo.bag \
  4. --models pinhole-radtan pinhole-radtan \
  5. --topics /infra_left /infra_right \
  6. --bag-from-to 10 130 --show-extraction --approx-sync 0.1

参数解释

  • --targt 标定板的配置文件路径
  • --bag 采集的数据包的路径
  • --models 每个相机的模型
  • --topics 每个相机发布的话题,需要与前面的相机模型对应
  • --bag-from-to 处理bag中指定时间段的数据
  • --show-extraction 表示显示检测特征点的过程

报错1:
Initialization of focal length failed. You can enable manual input by setting ‘KALIBR_MANUAL_FOCAL_LENGTH_INIT’.
[ERROR] [1668944382.174500]: initialization of focal length for cam with topic /color failed

解决:
如果提示不能得到初始焦距的时候,可以设置:export KALIBR_MANUAL_FOCAL_LENGTH_INIT=1(终端输入)。然后运行程序,当程序运行失败的时候,它会提示要你手动输入一个焦距,Initialization of focal length failed. Provide manual initialization: 这时手动输入比如 400,给比较大的值,也能收敛。
参考:Realsence D455标定并运行Vins-Fusion_realsense 自动标定_呼叫江江的博客-CSDN博客

报错2:
Cameras are not connected through mutual observations, please check the dataset. Maybe adjust the approx. sync. tolerance.

解决:
应该是两个相机时间不同步导致的,需要调整参数:

--approx-sync 0.04

报错3:

File "/home/lilabws001/catkin_ws/src/kalibr/src/kalibr/aslam_offline_calibration/kalibr/python/kalibr_camera_calibration/CameraUtils.py", line 123, in getReprojectionErrorStatistics
    mean = np.mean(rerr_matrix, 0, dtype=np.float)
  File "/home/lilabws001/.local/lib/python3.8/site-packages/numpy/__init__.py", line 305, in __getattr__
    raise AttributeError(__former_attrs__[attr])
AttributeError: module 'numpy' has no attribute 'float'.
`np.float` was a deprecated alias for the builtin `float`. To avoid this error in existing code, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.

解决:

修改 kalibr/aslam_offline_calibration/kalibr/python/kalibr_camera_calibrationCameraUtils.py 文件 line 123 和 line 124

  1. mean = np.mean(rerr_matrix, 0, dtype=np.float64)
  2. std = np.std(rerr_matrix, 0, dtype=np.float64)

然后重新标定,标定完成后会输出标定结果。

三、相机 和 IMU 联合标定

新建文件夹

mkdir -p ~/catkin_ws/src/kalibr/bag/stereo_imu/

3.1 建立标定所需的配置文件

首先将前面用于标定的标定板的配置文件 april_6x6_A4.yaml 复制到当前目录下,文件内容

  1. target_type: 'aprilgrid' #gridtype
  2. tagCols: 6 #number of apriltags
  3. tagRows: 6 #number of apriltags
  4. tagSize: 0.0318 #size of apriltag, edge to edge [m] 要亲自拿尺子量一下
  5. tagSpacing: 0.305 #ratio of space between tags to tagSize

然后利用前面两节标定出来的相机和 imu 数据分别创建用于联合标定的两个 yaml 文件

第一个是 imu 标定文件,命名为 imu.yaml,放在 ~/kalibr/bag/stereo_imu/ 目录下

  1. #Accelerometers
  2. accelerometer_noise_density: 2.3726567696372197e-02 #Noise density (continuous-time)
  3. accelerometer_random_walk: 3.4998014052324268e-04 #Bias random walk
  4. #Gyroscopes
  5. gyroscope_noise_density: 2.9170092608699020e-03 #Noise density (continuous-time)
  6. gyroscope_random_walk: 2.0293647966050773e-05 #Bias random walk
  7. rostopic: /imu #the IMU ROS topic
  8. update_rate: 200.0 #Hz (for discretization of the values above)

第二个是 相机 标定文件,命名为 stereo.yaml,放在 ~/kalibr/bag/stereo_imu/ 目录下

  1. cam0:
  2. camera_model: pinhole
  3. distortion_coeffs: [0.008164119133114047, -0.004262736896205682, 0.00018631722833154752, 0.000787900754729365]
  4. distortion_model: radtan
  5. intrinsics: [382.6730910374852, 382.92071041253627, 322.75543963112193, 236.70194625219574]
  6. resolution: [640, 480]
  7. rostopic: /infra_left
  8. cam1:
  9. T_cn_cnm1:
  10. - [0.999998451671115, 2.8757914694169446e-05, 0.0017594966182482613, -0.050366075624740984]
  11. - [-2.9002408639730846e-05, 0.9999999899284603, 0.00013893140083111915, 6.282865148510808e-05]
  12. - [-0.0017594926051500526, -0.00013898221535954127, 0.9999984424336424, -4.991600269348002e-05]
  13. - [0.0, 0.0, 0.0, 1.0]
  14. camera_model: pinhole
  15. distortion_coeffs: [0.008643399298017006, -0.0051253525048807844, -0.00019751500921053345, 0.00044002401613992687]
  16. distortion_model: radtan
  17. intrinsics: [382.64357095584296, 382.86804296348265, 322.37239440429965, 236.64851650860956]
  18. resolution: [640, 480]
  19. rostopic: /infra_right

这两个文件的具体数据需要于前两节的标定结果相对应。

3.2 录制 相机 和 imu 的联合数据

调整 相机 和 imu 的 topic 的发布频率以及以新的topic名发布它们,其中双目图像的发布频率改为20Hz,imu发布频率改为200Hz

  1. rosrun topic_tools throttle messages /camera/infra1/image_rect_raw 4.0 /infra_left
  2. rosrun topic_tools throttle messages /camera/infra2/image_rect_raw 4.0 /infra_right
  3. rosrun topic_tools throttle messages /camera/imu 200.0 /imu

然后录制数据

rosbag record /infra_left /infra_right /imu -O ~/catkin_ws/src/kalibr/bag/stereo_imu/stereo_imu.bag

录制操作与第二节相同,参考

Kalibr相机及IMU校准教程(Tutorial: IMU-camera calibration)_哔哩哔哩_bilibili

总结下来就是偏航角左右摆动2次,俯仰角摆动2次,滚转角摆动2次,上下移动2次,左右移动2次,前后移动2次,然后自由移动一段时间,摆动幅度要大一点,让视角变化大一点,但是移动要缓慢一点,同时要保证标定板在2个相机视野内部,整个标定时间要在90s以上更好,但是优化时间会比较长。

3.3 联合标定 相机 和 imu

录制完成后,终端输入

  1. rosrun kalibr kalibr_calibrate_imu_camera \
  2. --target /home/lilabws001/catkin_ws/src/kalibr/bag/stereo_imu/april_6x6_A4.yaml \
  3. --bag /home/lilabws001/catkin_ws/src/kalibr/bag/stereo_imu/stereo_imu.bag \
  4. --cam /home/lilabws001/catkin_ws/src/kalibr/bag/stereo_imu/stereo.yaml \
  5. --imu /home/lilabws001/catkin_ws/src/kalibr/bag/stereo_imu/imu.yaml \
  6. --bag-from-to 10 50 --show-extraction

参数解释

  • --targt 标定板的配置文件路径
  • --bag 采集的数据包的路径
  • --cam 标定好的相机的参数文件
  • --imu 标定好的 imu 的参数文件
  • --bag-from-to 处理bag中指定时间段的数据(时间太长要等很久而且结果可能退化)
  • --show-extraction 表示显示检测特征点的过程

报错:

File "/usr/lib/python3/dist-packages/scipy/sparse/sputils.py", line 16, in <module>
    supported_dtypes = [np.typeDict[x] for x in supported_dtypes]
  File "/usr/lib/python3/dist-packages/scipy/sparse/sputils.py", line 16, in <listcomp>
    supported_dtypes = [np.typeDict[x] for x in supported_dtypes]
  File "/home/lilabws001/.local/lib/python3.8/site-packages/numpy/__init__.py", line 320, in __getattr__
    raise AttributeError("module {!r} has no attribute "
AttributeError: module 'numpy' has no attribute 'typeDict'

解决:

numpy 版本过高,安装较低版本的 numpy

pip3 install numpy==1.21

重新标定即可。

如果选的时间太长要等很久,因为结果可能退化

多等一会即可,输出标定结果。

其中 stereo_imu-results-imucam.txt 内容为标定结果

  1. Calibration results
  2. ===================
  3. Normalized Residuals
  4. ----------------------------
  5. Reprojection error (cam0): mean 0.1104504565760671, median 0.10931046996879386, std: 0.04566466456955288
  6. Reprojection error (cam1): mean 0.10568403044796316, median 0.10371974631938084, std: 0.04481417386193855
  7. Gyroscope error (imu0): mean 0.0013850311184222608, median 2.5661565262693863e-06, std: 0.009802423645836557
  8. Accelerometer error (imu0): mean 0.001268643166366196, median 4.695420807691451e-07, std: 0.00974036762203694
  9. Residuals
  10. ----------------------------
  11. Reprojection error (cam0) [px]: mean 0.1104504565760671, median 0.10931046996879386, std: 0.04566466456955288
  12. Reprojection error (cam1) [px]: mean 0.10568403044796316, median 0.10371974631938084, std: 0.04481417386193855
  13. Gyroscope error (imu0) [rad/s]: mean 5.713632942751922e-05, median 1.058609894733102e-07, std: 0.00040437683974539325
  14. Accelerometer error (imu0) [m/s^2]: mean 0.0004256860317308491, median 1.5755218677114464e-07, std: 0.0032683252080259934
  15. Transformation (cam0):
  16. -----------------------
  17. T_ci: (imu0 to cam0):
  18. [[ 0.99991885 -0.00448156 -0.01192529 -0.00263335]
  19. [ 0.00454447 0.99997587 0.00525384 -0.00174852]
  20. [ 0.01190145 -0.00530761 0.99991509 -0.00021396]
  21. [ 0. 0. 0. 1. ]]
  22. T_ic: (cam0 to imu0):
  23. [[ 0.99991885 0.00454447 0.01190145 0.00264362]
  24. [-0.00448156 0.99997587 -0.00530761 0.00173554]
  25. [-0.01192529 0.00525384 0.99991509 0.00019172]
  26. [ 0. 0. 0. 1. ]]
  27. timeshift cam0 to imu0: [s] (t_imu = t_cam + shift)
  28. 0.002278866295546706
  29. Transformation (cam1):
  30. -----------------------
  31. T_ci: (imu0 to cam1):
  32. [[ 0.99992565 -0.0044584 -0.01134993 -0.05300071]
  33. [ 0.00452389 0.99997323 0.00575127 -0.00163601]
  34. [ 0.01132399 -0.00580219 0.99991905 -0.00023653]
  35. [ 0. 0. 0. 1. ]]
  36. T_ic: (cam1 to imu0):
  37. [[ 0.99992565 0.00452389 0.01132399 0.05300685]
  38. [-0.0044584 0.99997323 -0.00580219 0.0013983 ]
  39. [-0.01134993 0.00575127 0.99991905 -0.00035563]
  40. [ 0. 0. 0. 1. ]]
  41. timeshift cam1 to imu0: [s] (t_imu = t_cam + shift)
  42. 0.00246986588204672
  43. Baselines:
  44. ----------
  45. Baseline (cam0 to cam1):
  46. [[ 0.99999983 0.00002622 0.00057526 -0.05036719]
  47. [-0.0000265 0.99999988 0.00049716 0.00011254]
  48. [-0.00057525 -0.00049718 0.99999971 -0.00002496]
  49. [ 0. 0. 0. 1. ]]
  50. baseline norm: 0.05036732476881377 [m]
  51. Gravity vector in target coords: [m/s^2]
  52. [-0.0908983 -9.80442883 0.18258076]
  53. Calibration configuration
  54. =========================
  55. cam0
  56. -----
  57. Camera model: pinhole
  58. Focal length: [382.17500647201865, 382.4214301817554]
  59. Principal point: [322.86349593743256, 236.54094094752824]
  60. Distortion model: radtan
  61. Distortion coefficients: [0.005773123668491621, -0.0040545501820581885, 0.00028207298182264084, 0.0008053010502294262]
  62. Type: aprilgrid
  63. Tags:
  64. Rows: 6
  65. Cols: 6
  66. Size: 0.0318 [m]
  67. Spacing 0.009699000000000001 [m]
  68. cam1
  69. -----
  70. Camera model: pinhole
  71. Focal length: [382.2362024108845, 382.43170351451005]
  72. Principal point: [322.9638181263497, 236.36811655369087]
  73. Distortion model: radtan
  74. Distortion coefficients: [0.006243739765081835, -0.004482994321431694, -0.0003470496074590888, 0.0006688633081104086]
  75. Type: aprilgrid
  76. Tags:
  77. Rows: 6
  78. Cols: 6
  79. Size: 0.0318 [m]
  80. Spacing 0.009699000000000001 [m]
  81. IMU configuration
  82. =================
  83. IMU0:
  84. ----------------------------
  85. Model: calibrated
  86. Update rate: 200.0
  87. Accelerometer:
  88. Noise density: 0.023726567696372197
  89. Noise density (discrete): 0.3355443382477292
  90. Random walk: 0.0003499801405232427
  91. Gyroscope:
  92. Noise density: 0.002917009260869902
  93. Noise density (discrete): 0.04125274058290133
  94. Random walk: 2.0293647966050773e-05
  95. T_ib (imu0 to imu0)
  96. [[1. 0. 0. 0.]
  97. [0. 1. 0. 0.]
  98. [0. 0. 1. 0.]
  99. [0. 0. 0. 1.]]
  100. time offset with respect to IMU0: 0.0 [s]

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop】
推荐阅读
相关标签
  

闽ICP备14008679号