赞
踩
使用 imu_utils 功能包标定 IMU,由于imu_utils功能包的编译依赖于code_utils,需要先编译code_utils,主要参考
Ubuntu20.04编译并运行imu_utils,并且标定IMU_学无止境的小龟的博客-CSDN博客
创建工作空间
- mkdir -p ~/catkin_ws/src/imu_calib/src/
- cd ~/catkin_ws/src/imu_calib/src
- git clone https://github.com/gaowenliang/code_utils.git
1.1.1 修改 CMakeLists.txt 文件
修改 set(CMAKE_CXX_FLAGS "-std=c++11") 为 set(CMAKE_CXX_FLAGS "-std=c++14")
修改 #include "backward.hpp" 为 include “code_utils/backward.hpp”
如果安装的是 OpenCV 4.x.x 则需要修改一些全局变量的名称,终端输入
- cd ~/catkin_ws/src/imu_calib/src/code_utils/
- sed -i 's/CV_LOAD_IMAGE_UNCHANGED/cv::IMREAD_UNCHANGED/g' `grep CV_LOAD_IMAGE_UNCHANGED -rl ./`
- sed -i 's/CV_LOAD_IMAGE_GRAYSCALE/cv::IMREAD_GRAYSCALE/g' `grep CV_LOAD_IMAGE_GRAYSCALE -rl ./`
- sed -i 's/CV_MINMAX/cv::NORM_MINMAX/g' `grep CV_MINMAX -rl ./`
安装依赖
sudo apt-get install libdw-dev
编译 code_utils
- mkdir -p ~/catkin_ws/src/imu_calib/
- catkin_make
- mkdir -p ~/catkin_ws/src/imu_calib/src/
- cd ~/catkin_ws/src/imu_calib/src
- git clone https://github.com/gaowenliang/imu_utils.git
修改 CMakeLists.txt 文件
修改 set(CMAKE_CXX_FLAGS "-std=c++11") 为 set(CMAKE_CXX_FLAGS "-std=c++14")
修改 imu_an.cpp 文件
添加头文件:#include <fstream>
编译 imu_utils
- mkdir -p ~/catkin_ws/src/imu_calib/
- catkin_make
1.3 录制 imu 数据集
创建录制的数据保存路径
- mkdir ~/catkin_ws/src/imu_calib/bag/
- cd imu_calib/bag/
启动相应的设备开始发布 imu 数据,d435i 相机可以启用 realsense-ros 发布相机 imu 数据
roslaunch realsense2_camera rs_camera.launch
静止情况下采集IMU的数据,并录制为ROS包,采集的时间 2小时 左右
rosbag record /camera/imu -O ~/catkin_ws/src/imu_calib/bag/imu.bag
在 ~/imu_calib/src/imu_utils/launch 路径下创建如下 d435i.launch 文件
- <launch>
- <node pkg="imu_utils" type="imu_an" name="imu_an" output="screen">
- <!--订阅的imu话题-->
- <param name="imu_topic" type="string" value= "/camera/imu"/>
- <!--标定结果的名称-->
- <param name="imu_name" type="string" value= "d435i"/>
- <!--标定结果存放路径-->
- <param name="data_save_path" type="string" value= "$(find imu_utils)/../../bag/d435i/"/>
- <!--数据录制时间-min 120分钟 可以自行修改 一般要大于60-->
- <param name="max_time_min" type="int" value= "120"/>
- <!--imu采样频率,设置为400-->
- <param name="max_cluster" type="int" value= "400"/>
- </node>
- </launch>
在 imu 数据采集完毕后(录制时间两小时左右),启动上述 launch 文件标定 imu 内参
- roslaunch imu_utils d435i.launch
- rosbag play -r 200 ~/catkin_ws/src/imu_calib/bag/imu.bag
数据包播放结束之后,在 ~
/catkin_ws/src/imu_calib/bag/
这个文件夹下会出现一系列的参数文件,
打开 d435i_imu_param.yaml
这个文件,会看到计算出来的噪声和随机游走的系数值
至此,IMU的内参标定和记录结束。
使用 kalibr 功能包标定相机,编译 kalibr,主要参考
https://github.com/ethz-asl/kalibr/wiki/installation
创建工作空间并下载源码
- mkdir -p ~/catkin_ws/src/kalibr/src/ && cd ~/catkin_ws/src/kalibr/src/
- git clone https://github.com/ethz-asl/kalibr.git
编译 kalibr
cd ~/catkin_ws/src/kalibr/ && catkin build -DCMAKE_BUILD_TYPE=Release -j4
终端输入
- source ~/catkin_ws/src/kalibr/devel/setup.bash
- cd ~/catkin_ws/src/kalibr/bag/stereo/
- rosrun kalibr kalibr_create_target_pdf --type apriltag --nx 6 --ny 6 --tsize 0.022 --tspace 0.3
不论是打印PDF标定还是直接在电脑里面打开PDF标定,都要实际测量一下二维码方格和小方格的的长度,再填到yaml文件里面,
--type apriltag 标定板类型
--nx [NUM_COLS] 列个数
--ny [NUM_ROWS] 行个数
--tsize [TAG_WIDTH_M] 二维码方格长度,单位m
--tspace [TAG_SPACING_PERCENT] 小方格与二维码方格长度比例
新建 april_6x6_A4.yaml 文件,格式参考上面的yaml,内容展示如下:
- target_type: 'aprilgrid' #gridtype
- tagCols: 6 #number of apriltags
- tagRows: 6 #number of apriltags
- tagSize: 0.0318 #size of apriltag, edge to edge [m] 要亲自拿尺子量一下
- tagSpacing: 0.305 #ratio of space between tags to tagSize
千万要自己量一下 tagSize!!!
启动相应的设备开始发布 相机 数据,d435i 相机可以启用 realsense-ros 发布相机 imu 数据
roslaunch realsense2_camera rs_camera.launch
kalibr 在处理标定数据的时候要求频率不能太高,官方推荐是4Hz(尽管实际频率不完全准确,但是不影响结果),我们可以使用如下命令来更改topic的频率,实际上是将原来的topic以新的频率转成新的topic, infra1 对应左目相机。
- rosrun topic_tools throttle messages /camera/infra1/image_rect_raw 4.0 /infra_left
- rosrun topic_tools throttle messages /camera/infra2/image_rect_raw 4.0 /infra_right
创建数据保存路径,并录制双目图像数据
- mkdir -p ~/kalibr/bag/stereo/
- rosbag record /infra_left /infra_right -O ~/catkin_ws/src/kalibr/bag/stereo/stereo.bag
录制操作参考
Kalibr相机及IMU校准教程(Tutorial: IMU-camera calibration)_哔哩哔哩_bilibili
总结下来就是偏航角左右摆动2次,俯仰角摆动2次,滚转角摆动2次,上下移动2次,左右移动2次,前后移动2次,然后自由移动一段时间,摆动幅度要大一点,让视角变化大一点,但是移动要缓慢一点,同时要保证标定板在2个相机视野内部,整个标定时间要在90s以上更好,但是优化时间会比较长。
录制完成后使用 kalibr 标定
- rosrun kalibr kalibr_calibrate_cameras \
- --target /home/lilabws001/catkin_ws/src/kalibr/bag/d435i/stereo/april_6x6_A4.yaml \
- --bag /home/lilabws001/catkin_ws/src/kalibr/bag/d435i/stereo/stereo.bag \
- --models pinhole-radtan pinhole-radtan \
- --topics /infra_left /infra_right \
- --bag-from-to 10 130 --show-extraction --approx-sync 0.1
参数解释
- --targt 标定板的配置文件路径
- --bag 采集的数据包的路径
- --models 每个相机的模型
- --topics 每个相机发布的话题,需要与前面的相机模型对应
- --bag-from-to 处理bag中指定时间段的数据
- --show-extraction 表示显示检测特征点的过程
报错1:
Initialization of focal length failed. You can enable manual input by setting ‘KALIBR_MANUAL_FOCAL_LENGTH_INIT’.
[ERROR] [1668944382.174500]: initialization of focal length for cam with topic /color failed
解决:
如果提示不能得到初始焦距的时候,可以设置:export KALIBR_MANUAL_FOCAL_LENGTH_INIT=1(终端输入)。然后运行程序,当程序运行失败的时候,它会提示要你手动输入一个焦距,Initialization of focal length failed. Provide manual initialization: 这时手动输入比如 400,给比较大的值,也能收敛。
参考:Realsence D455标定并运行Vins-Fusion_realsense 自动标定_呼叫江江的博客-CSDN博客
报错2:
Cameras are not connected through mutual observations, please check the dataset. Maybe adjust the approx. sync. tolerance.
解决:
应该是两个相机时间不同步导致的,需要调整参数:
--approx-sync 0.04
报错3:
File "/home/lilabws001/catkin_ws/src/kalibr/src/kalibr/aslam_offline_calibration/kalibr/python/kalibr_camera_calibration/CameraUtils.py", line 123, in getReprojectionErrorStatistics
mean = np.mean(rerr_matrix, 0, dtype=np.float)
File "/home/lilabws001/.local/lib/python3.8/site-packages/numpy/__init__.py", line 305, in __getattr__
raise AttributeError(__former_attrs__[attr])
AttributeError: module 'numpy' has no attribute 'float'.
`np.float` was a deprecated alias for the builtin `float`. To avoid this error in existing code, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
解决:
修改 kalibr/aslam_offline_calibration/kalibr/python/kalibr_camera_calibrationCameraUtils.py 文件 line 123 和 line 124
- mean = np.mean(rerr_matrix, 0, dtype=np.float64)
- std = np.std(rerr_matrix, 0, dtype=np.float64)
然后重新标定,标定完成后会输出标定结果。
新建文件夹
mkdir -p ~/catkin_ws/src/kalibr/bag/stereo_imu/
首先将前面用于标定的标定板的配置文件 april_6x6_A4.yaml 复制到当前目录下,文件内容
- target_type: 'aprilgrid' #gridtype
- tagCols: 6 #number of apriltags
- tagRows: 6 #number of apriltags
- tagSize: 0.0318 #size of apriltag, edge to edge [m] 要亲自拿尺子量一下
- tagSpacing: 0.305 #ratio of space between tags to tagSize
然后利用前面两节标定出来的相机和 imu 数据分别创建用于联合标定的两个 yaml 文件
第一个是 imu 标定文件,命名为 imu.yaml,放在 ~/kalibr/bag/stereo_imu/ 目录下
- #Accelerometers
- accelerometer_noise_density: 2.3726567696372197e-02 #Noise density (continuous-time)
- accelerometer_random_walk: 3.4998014052324268e-04 #Bias random walk
-
- #Gyroscopes
- gyroscope_noise_density: 2.9170092608699020e-03 #Noise density (continuous-time)
- gyroscope_random_walk: 2.0293647966050773e-05 #Bias random walk
-
- rostopic: /imu #the IMU ROS topic
- update_rate: 200.0 #Hz (for discretization of the values above)
第二个是 相机 标定文件,命名为 stereo.yaml,放在 ~/kalibr/bag/stereo_imu/ 目录下
- cam0:
- camera_model: pinhole
- distortion_coeffs: [0.008164119133114047, -0.004262736896205682, 0.00018631722833154752, 0.000787900754729365]
- distortion_model: radtan
- intrinsics: [382.6730910374852, 382.92071041253627, 322.75543963112193, 236.70194625219574]
- resolution: [640, 480]
- rostopic: /infra_left
- cam1:
- T_cn_cnm1:
- - [0.999998451671115, 2.8757914694169446e-05, 0.0017594966182482613, -0.050366075624740984]
- - [-2.9002408639730846e-05, 0.9999999899284603, 0.00013893140083111915, 6.282865148510808e-05]
- - [-0.0017594926051500526, -0.00013898221535954127, 0.9999984424336424, -4.991600269348002e-05]
- - [0.0, 0.0, 0.0, 1.0]
- camera_model: pinhole
- distortion_coeffs: [0.008643399298017006, -0.0051253525048807844, -0.00019751500921053345, 0.00044002401613992687]
- distortion_model: radtan
- intrinsics: [382.64357095584296, 382.86804296348265, 322.37239440429965, 236.64851650860956]
- resolution: [640, 480]
- rostopic: /infra_right
这两个文件的具体数据需要于前两节的标定结果相对应。
调整 相机 和 imu 的 topic 的发布频率以及以新的topic名发布它们,其中双目图像的发布频率改为20Hz,imu发布频率改为200Hz
- rosrun topic_tools throttle messages /camera/infra1/image_rect_raw 4.0 /infra_left
- rosrun topic_tools throttle messages /camera/infra2/image_rect_raw 4.0 /infra_right
- rosrun topic_tools throttle messages /camera/imu 200.0 /imu
然后录制数据
rosbag record /infra_left /infra_right /imu -O ~/catkin_ws/src/kalibr/bag/stereo_imu/stereo_imu.bag
录制操作与第二节相同,参考
Kalibr相机及IMU校准教程(Tutorial: IMU-camera calibration)_哔哩哔哩_bilibili
总结下来就是偏航角左右摆动2次,俯仰角摆动2次,滚转角摆动2次,上下移动2次,左右移动2次,前后移动2次,然后自由移动一段时间,摆动幅度要大一点,让视角变化大一点,但是移动要缓慢一点,同时要保证标定板在2个相机视野内部,整个标定时间要在90s以上更好,但是优化时间会比较长。
录制完成后,终端输入
- rosrun kalibr kalibr_calibrate_imu_camera \
- --target /home/lilabws001/catkin_ws/src/kalibr/bag/stereo_imu/april_6x6_A4.yaml \
- --bag /home/lilabws001/catkin_ws/src/kalibr/bag/stereo_imu/stereo_imu.bag \
- --cam /home/lilabws001/catkin_ws/src/kalibr/bag/stereo_imu/stereo.yaml \
- --imu /home/lilabws001/catkin_ws/src/kalibr/bag/stereo_imu/imu.yaml \
- --bag-from-to 10 50 --show-extraction
参数解释
- --targt 标定板的配置文件路径
- --bag 采集的数据包的路径
- --cam 标定好的相机的参数文件
- --imu 标定好的 imu 的参数文件
- --bag-from-to 处理bag中指定时间段的数据(时间太长要等很久而且结果可能退化)
- --show-extraction 表示显示检测特征点的过程
报错:
File "/usr/lib/python3/dist-packages/scipy/sparse/sputils.py", line 16, in <module>
supported_dtypes = [np.typeDict[x] for x in supported_dtypes]
File "/usr/lib/python3/dist-packages/scipy/sparse/sputils.py", line 16, in <listcomp>
supported_dtypes = [np.typeDict[x] for x in supported_dtypes]
File "/home/lilabws001/.local/lib/python3.8/site-packages/numpy/__init__.py", line 320, in __getattr__
raise AttributeError("module {!r} has no attribute "
AttributeError: module 'numpy' has no attribute 'typeDict'
解决:
numpy 版本过高,安装较低版本的 numpy
pip3 install numpy==1.21
重新标定即可。
如果选的时间太长要等很久,因为结果可能退化
多等一会即可,输出标定结果。
其中 stereo_imu-results-imucam.txt 内容为标定结果
- Calibration results
- ===================
- Normalized Residuals
- ----------------------------
- Reprojection error (cam0): mean 0.1104504565760671, median 0.10931046996879386, std: 0.04566466456955288
- Reprojection error (cam1): mean 0.10568403044796316, median 0.10371974631938084, std: 0.04481417386193855
- Gyroscope error (imu0): mean 0.0013850311184222608, median 2.5661565262693863e-06, std: 0.009802423645836557
- Accelerometer error (imu0): mean 0.001268643166366196, median 4.695420807691451e-07, std: 0.00974036762203694
-
- Residuals
- ----------------------------
- Reprojection error (cam0) [px]: mean 0.1104504565760671, median 0.10931046996879386, std: 0.04566466456955288
- Reprojection error (cam1) [px]: mean 0.10568403044796316, median 0.10371974631938084, std: 0.04481417386193855
- Gyroscope error (imu0) [rad/s]: mean 5.713632942751922e-05, median 1.058609894733102e-07, std: 0.00040437683974539325
- Accelerometer error (imu0) [m/s^2]: mean 0.0004256860317308491, median 1.5755218677114464e-07, std: 0.0032683252080259934
-
- Transformation (cam0):
- -----------------------
- T_ci: (imu0 to cam0):
- [[ 0.99991885 -0.00448156 -0.01192529 -0.00263335]
- [ 0.00454447 0.99997587 0.00525384 -0.00174852]
- [ 0.01190145 -0.00530761 0.99991509 -0.00021396]
- [ 0. 0. 0. 1. ]]
-
- T_ic: (cam0 to imu0):
- [[ 0.99991885 0.00454447 0.01190145 0.00264362]
- [-0.00448156 0.99997587 -0.00530761 0.00173554]
- [-0.01192529 0.00525384 0.99991509 0.00019172]
- [ 0. 0. 0. 1. ]]
-
- timeshift cam0 to imu0: [s] (t_imu = t_cam + shift)
- 0.002278866295546706
-
-
- Transformation (cam1):
- -----------------------
- T_ci: (imu0 to cam1):
- [[ 0.99992565 -0.0044584 -0.01134993 -0.05300071]
- [ 0.00452389 0.99997323 0.00575127 -0.00163601]
- [ 0.01132399 -0.00580219 0.99991905 -0.00023653]
- [ 0. 0. 0. 1. ]]
-
- T_ic: (cam1 to imu0):
- [[ 0.99992565 0.00452389 0.01132399 0.05300685]
- [-0.0044584 0.99997323 -0.00580219 0.0013983 ]
- [-0.01134993 0.00575127 0.99991905 -0.00035563]
- [ 0. 0. 0. 1. ]]
-
- timeshift cam1 to imu0: [s] (t_imu = t_cam + shift)
- 0.00246986588204672
-
- Baselines:
- ----------
- Baseline (cam0 to cam1):
- [[ 0.99999983 0.00002622 0.00057526 -0.05036719]
- [-0.0000265 0.99999988 0.00049716 0.00011254]
- [-0.00057525 -0.00049718 0.99999971 -0.00002496]
- [ 0. 0. 0. 1. ]]
- baseline norm: 0.05036732476881377 [m]
-
-
- Gravity vector in target coords: [m/s^2]
- [-0.0908983 -9.80442883 0.18258076]
-
-
- Calibration configuration
- =========================
-
- cam0
- -----
- Camera model: pinhole
- Focal length: [382.17500647201865, 382.4214301817554]
- Principal point: [322.86349593743256, 236.54094094752824]
- Distortion model: radtan
- Distortion coefficients: [0.005773123668491621, -0.0040545501820581885, 0.00028207298182264084, 0.0008053010502294262]
- Type: aprilgrid
- Tags:
- Rows: 6
- Cols: 6
- Size: 0.0318 [m]
- Spacing 0.009699000000000001 [m]
-
- cam1
- -----
- Camera model: pinhole
- Focal length: [382.2362024108845, 382.43170351451005]
- Principal point: [322.9638181263497, 236.36811655369087]
- Distortion model: radtan
- Distortion coefficients: [0.006243739765081835, -0.004482994321431694, -0.0003470496074590888, 0.0006688633081104086]
- Type: aprilgrid
- Tags:
- Rows: 6
- Cols: 6
- Size: 0.0318 [m]
- Spacing 0.009699000000000001 [m]
-
-
-
- IMU configuration
- =================
-
- IMU0:
- ----------------------------
- Model: calibrated
- Update rate: 200.0
- Accelerometer:
- Noise density: 0.023726567696372197
- Noise density (discrete): 0.3355443382477292
- Random walk: 0.0003499801405232427
- Gyroscope:
- Noise density: 0.002917009260869902
- Noise density (discrete): 0.04125274058290133
- Random walk: 2.0293647966050773e-05
- T_ib (imu0 to imu0)
- [[1. 0. 0. 0.]
- [0. 1. 0. 0.]
- [0. 0. 1. 0.]
- [0. 0. 0. 1.]]
- time offset with respect to IMU0: 0.0 [s]
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。