赞
踩
文章不赘述OpenGL的使用入门,使用入门请参考LearnOpenGL CN(https://learnopengl-cn.github.io/)。
文章主要参考:
【1】【学习笔记】Unity 基于GPU FFT海洋的实现-理论篇(https://zhuanlan.zhihu.com/p/95482541)
【2】【学习笔记】Unity 基于GPU FFT海洋的实现-实践篇(https://zhuanlan.zhihu.com/p/96811613)
【3】fft海面模拟(二)(https://zhuanlan.zhihu.com/p/64726720)
【4】海面模拟以及渲染(计算着色器、FFT、Reflection Matrix)(https://blog.csdn.net/xiewenzhao123/article/details/79111004)
【5】一小时学会快速傅里叶变换(Fast Fourier Transform)(https://zhuanlan.zhihu.com/p/31584464)
【6】真实感水体渲染技术总结(https://zhuanlan.zhihu.com/p/95917609?utm_source=qq)
基于快速傅立叶变换(Fast Fourier Transform,FFT)的水体渲染方法是目前广泛使用的一种海洋表面渲染方案。
const int N = 512; const int L = 512; const float spacing = 10.0; const int BUTTERFLY_STEPS = std::log2(N); const int LOCAL_WORK_GROUP_SIZE = 32; const int GLOBAL_WORK_GROUP_SIZE = N / LOCAL_WORK_GROUP_SIZE; const float G = 9.81; const float A = 0.001;//phillips谱参数,影响波浪高度 const float PI = 3.141592653589; const glm::vec2 WindDir = glm::vec2(1.0, 2.0);//风向 int drawTest(); float GeneratePhillipsSpectrum(glm::vec2 k); float dispersion(glm::vec2 k); glm::vec2 ComputeGaussianRandom(int x, int y); glm::vec2 gaussian(int x, int y); unsigned int wangHash(unsigned int seed); float rand(unsigned int& rngState); float DonelanBannerDirectionalSpreading(glm::vec2 k); int drawTest() { auto window = initWindow(); Ogle::Shader* heightShader = new Ogle::Shader("./0_1_GenerateHeightSpectrum.comp"); Ogle::Shader* displacementShader = new Ogle::Shader("./0_2_GenerateXZDisplacement.comp"); Ogle::Shader* normalShader = new Ogle::Shader("./0_3_GenerationNormalBubbles.comp"); Ogle::Shader* fftHorShader = new Ogle::Shader("./0_4_FFTHorizontal.comp"); Ogle::Shader* fftVerShader = new Ogle::Shader("./0_5_FFTVertical.comp"); Ogle::Shader* drawShader = new Ogle::Shader("./0_DrawTest.vert", "./0_DrawTest.frag"); float* vertices = new float[N * N * 5]; float sX = -(N - 1) * spacing / 2.0; float sZ = (N - 1) * spacing / 2.0; float vX = 0.0; float vY = 0.0; for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { vertices[i * N * 5 + j * 5] = sX; vertices[i * N * 5 + j * 5 + 1] = 0.0; vertices[i * N * 5 + j * 5 + 2] = sZ; vertices[i * N * 5 + j * 5 + 3] = vX; vertices[i * N * 5 + j * 5 + 4] = vY; sX += spacing; vX += 1.0 / (N - 1); } sX = -(N - 1) * spacing / 2.0; sZ -= spacing; vX = 0.0; vY += 1.0 / (N - 1); } unsigned int* indices = new unsigned int[(N - 1) * (N - 1) * 6]; for (int i = 0; i < N - 1; i++) { for (int j = 0; j < N - 1; j++) { indices[i * (N - 1) * 6 + j * 6] = i * N + j; indices[i * (N - 1) * 6 + j * 6 + 1] = i * N + j + 1; indices[i * (N - 1) * 6 + j * 6 + 2] = (i + 1) * N + j; indices[i * (N - 1) * 6 + j * 6 + 3] = i * N + j + 1; indices[i * (N - 1) * 6 + j * 6 + 4] = (i + 1) * N + j; indices[i * (N - 1) * 6 + j * 6 + 5] = (i + 1) * N + j + 1; } } unsigned int VAO; glGenVertexArrays(1, &VAO); glBindVertexArray(VAO); unsigned int VBO; glGenBuffers(1, &VBO); glBindBuffer(GL_ARRAY_BUFFER, VBO); glBufferData(GL_ARRAY_BUFFER, N * N * 5 * 4, vertices, GL_STATIC_DRAW); unsigned int EBO; glGenBuffers(1, &EBO); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO); glBufferData(GL_ELEMENT_ARRAY_BUFFER, (N - 1) * (N - 1) * 6 * 4, indices, GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0); glEnableVertexAttribArray(0); glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float))); glEnableVertexAttribArray(1); /// float *h0Data = new float[N * N * 2]; float *h0ConjData = new float[N * N * 2]; for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) { //glm::vec2 k(2.0f * PI * (i - N / 2) / L, 2.0f * PI * (j - N / 2) / L); glm::vec2 k(2.0f * PI * i / N - PI, 2.0f * PI * j / N - PI); glm::vec2 gaussian = ComputeGaussianRandom(i, j); glm::vec2 hTilde0 = gaussian * std::sqrt(std::abs(GeneratePhillipsSpectrum(k) * DonelanBannerDirectionalSpreading(k)) / 2.0f); //gaussian = GenerateGaussianRandom();//有可能需要不同的随机数 glm::vec2 hTilde0Conj = gaussian * std::sqrt(std::abs(GeneratePhillipsSpectrum(-k) * DonelanBannerDirectionalSpreading(-k)) / 2.0f); hTilde0Conj.y *= -1.0f;//共轭所以y为负 h0Data[i * 2 * N + j * 2] = hTilde0.x; h0Data[i * 2 * N + j * 2 + 1] = hTilde0.y; h0ConjData[i * 2 * N + j * 2] = hTilde0Conj.x; h0ConjData[i * 2 * N + j * 2 + 1] = hTilde0Conj.y; } } //存储H0 unsigned int g_textureH0; glGenTextures(1, &g_textureH0); //glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, g_textureH0); glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32F, N, N, 0, GL_RG, GL_FLOAT, h0Data); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); //存储H0Conj unsigned int g_textureH0Conj; glGenTextures(1, &g_textureH0Conj); glBindTexture(GL_TEXTURE_2D, g_textureH0Conj); glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32F, N, N, 0, GL_RG, GL_FLOAT, h0ConjData); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); //存储Ht unsigned int g_textureHt; glGenTextures(1, &g_textureHt); glBindTexture(GL_TEXTURE_2D, g_textureHt); glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32F, N, N, 0, GL_RG, GL_FLOAT, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); //存储xz便宜图谱 unsigned int g_textureDisplacement[2]; glGenTextures(1, &g_textureDisplacement[0]);//x glBindTexture(GL_TEXTURE_2D, g_textureDisplacement[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32F, N, N, 0, GL_RG, GL_FLOAT, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glGenTextures(1, &g_textureDisplacement[1]);//z glBindTexture(GL_TEXTURE_2D, g_textureDisplacement[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32F, N, N, 0, GL_RG, GL_FLOAT, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); //存储IFFT后的xyz偏移结果 unsigned int g_textureResult[3]; glGenTextures(1, &g_textureResult[0]);//x glBindTexture(GL_TEXTURE_2D, g_textureResult[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32F, N, N, 0, GL_RG, GL_FLOAT, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glGenTextures(1, &g_textureResult[1]);//y glBindTexture(GL_TEXTURE_2D, g_textureResult[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32F, N, N, 0, GL_RG, GL_FLOAT, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glGenTextures(1, &g_textureResult[2]);//z glBindTexture(GL_TEXTURE_2D, g_textureResult[2]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32F, N, N, 0, GL_RG, GL_FLOAT, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); //临时存储 unsigned int g_textureTemp; glGenTextures(1, &g_textureTemp); glBindTexture(GL_TEXTURE_2D, g_textureTemp); glTexImage2D(GL_TEXTURE_2D, 0, GL_RG32F, N, N, 0, GL_RG, GL_FLOAT, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); //存储法线向量值 unsigned int g_textureNormal; glGenTextures(1, &g_textureNormal); glBindTexture(GL_TEXTURE_2D, g_textureNormal); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA32F, N, N, 0, GL_RGBA, GL_FLOAT, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); //使用GPU计算FFT需要先把第一次迭代的索引计算好例:N=8时 索引为(0,4) (2,6) (1,5) (3,7) float *butterflyIndices = new float[N]; for (int i = 0; i < N / 4; i++) { butterflyIndices[i * 2] = i * 2; butterflyIndices[i * 2 + 1] = i * 2 + N / 2; butterflyIndices[i * 2 + N / 2] = i * 2 + 1; butterflyIndices[i * 2 + N / 2 + 1] = i * 2 + N / 2 + 1; } //将计算好的索引值存储到贴图当中 unsigned int g_textureIndices; glGenTextures(1, &g_textureIndices); glBindTexture(GL_TEXTURE_1D, g_textureIndices); glTexImage1D(GL_TEXTURE_1D, 0, GL_R32F, N, 0, GL_RED, GL_FLOAT, butterflyIndices); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); /// glBindBuffer(GL_ARRAY_BUFFER, 0); glBindVertexArray(0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glEnable(GL_DEPTH_TEST); while (!glfwWindowShouldClose(window)) { float currentFrame = static_cast<float>(glfwGetTime()); deltaTime = currentFrame - lastFrame; lastFrame = currentFrame; float timeValue = glfwGetTime(); processInput(window); glClearColor(0.0f, 0.0f, 0.0f, 1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);//同时清除深度缓冲区 / //使用HeightSpectrum计算着色器计算高度 glUseProgram(heightShader->id); glBindImageTexture(0, g_textureH0, 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F); glBindImageTexture(1, g_textureH0Conj, 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F); glBindImageTexture(2, g_textureHt, 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RG32F); //传递运行时间 glUniform1f(glGetUniformLocation(heightShader->id, "time"), timeValue); //创建一个N*N大小的工作组,即同时计算所有的顶点高度值 glDispatchCompute(GLOBAL_WORK_GROUP_SIZE, GLOBAL_WORK_GROUP_SIZE, 1); //确保所有的数据都写入到贴图里了 glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); //使用XZDisplacement计算着色器计算xz方向偏移 glUseProgram(displacementShader->id); glBindImageTexture(0, g_textureHt, 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F); glBindImageTexture(1, g_textureDisplacement[0], 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RG32F); glBindImageTexture(2, g_textureDisplacement[1], 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RG32F); //创建一个N*N大小的工作组,即同时计算所有的顶点高度值 glDispatchCompute(GLOBAL_WORK_GROUP_SIZE, GLOBAL_WORK_GROUP_SIZE, 1); //确保所有的数据都写入到贴图里了 glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); //使用FFT计算着色器对结果进行逆变换 //y //Horizontal glUseProgram(fftHorShader->id); glUniform1i(glGetUniformLocation(fftHorShader->id, "u_steps"), BUTTERFLY_STEPS); //绑定索引贴图、上个计算着色器所得结果的波浪函数贴图、将要存储偏移值的贴图 glBindImageTexture(0, g_textureHt, 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F); glBindImageTexture(1, g_textureTemp, 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RG32F); glBindImageTexture(2, g_textureIndices, 0, GL_FALSE, 0, GL_READ_ONLY, GL_R32F); // 先对每一行进行逆变换 glDispatchCompute(1, N, 1); glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); //Vertical glUseProgram(fftVerShader->id); glUniform1i(glGetUniformLocation(fftVerShader->id, "u_steps"), BUTTERFLY_STEPS); //绑定索引贴图、上个计算着色器所得结果的波浪函数贴图、将要存储偏移值的贴图 glBindImageTexture(0, g_textureTemp, 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F); glBindImageTexture(1, g_textureResult[1], 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RG32F); glBindImageTexture(2, g_textureIndices, 0, GL_FALSE, 0, GL_READ_ONLY, GL_R32F); // 再对每一列进行逆变换 glDispatchCompute(N, 1, 1); glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); //使用FFT计算着色器对结果进行逆变换 //x //Horizontal glUseProgram(fftHorShader->id); glUniform1i(glGetUniformLocation(fftHorShader->id, "u_steps"), BUTTERFLY_STEPS); //绑定索引贴图、上个计算着色器所得结果的波浪函数贴图、将要存储偏移值的贴图 glBindImageTexture(0, g_textureDisplacement[0], 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F); glBindImageTexture(1, g_textureTemp, 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RG32F); glBindImageTexture(2, g_textureIndices, 0, GL_FALSE, 0, GL_READ_ONLY, GL_R32F); // 先对每一行进行逆变换 glDispatchCompute(1, N, 1); glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); //Vertical glUseProgram(fftVerShader->id); glUniform1i(glGetUniformLocation(fftVerShader->id, "u_steps"), BUTTERFLY_STEPS); //绑定索引贴图、上个计算着色器所得结果的波浪函数贴图、将要存储偏移值的贴图 glBindImageTexture(0, g_textureTemp, 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F); glBindImageTexture(1, g_textureResult[0], 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RG32F); glBindImageTexture(2, g_textureIndices, 0, GL_FALSE, 0, GL_READ_ONLY, GL_R32F); // 再对每一列进行逆变换 glDispatchCompute(N, 1, 1); glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); //使用FFT计算着色器对结果进行逆变换 //z //Horizontal glUseProgram(fftHorShader->id); glUniform1i(glGetUniformLocation(fftHorShader->id, "u_steps"), BUTTERFLY_STEPS); //绑定索引贴图、上个计算着色器所得结果的波浪函数贴图、将要存储偏移值的贴图 glBindImageTexture(0, g_textureDisplacement[1], 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F); glBindImageTexture(1, g_textureTemp, 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RG32F); glBindImageTexture(2, g_textureIndices, 0, GL_FALSE, 0, GL_READ_ONLY, GL_R32F); // 先对每一行进行逆变换 glDispatchCompute(1, N, 1); glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); //Vertical glUseProgram(fftVerShader->id); glUniform1i(glGetUniformLocation(fftVerShader->id, "u_steps"), BUTTERFLY_STEPS); //绑定索引贴图、上个计算着色器所得结果的波浪函数贴图、将要存储偏移值的贴图 glBindImageTexture(0, g_textureTemp, 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F); glBindImageTexture(1, g_textureResult[2], 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RG32F); glBindImageTexture(2, g_textureIndices, 0, GL_FALSE, 0, GL_READ_ONLY, GL_R32F); // 再对每一列进行逆变换 glDispatchCompute(N, 1, 1); glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); //更新法线向量 glUseProgram(normalShader->id); glBindImageTexture(0, g_textureResult[0], 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F); glBindImageTexture(1, g_textureResult[1], 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F); glBindImageTexture(2, g_textureResult[2], 0, GL_FALSE, 0, GL_READ_ONLY, GL_RG32F); glBindImageTexture(3, g_textureNormal, 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_RGBA32F); glDispatchCompute(GLOBAL_WORK_GROUP_SIZE, GLOBAL_WORK_GROUP_SIZE, 1); glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); / glUseProgram(drawShader->id); glUniform3f(glGetUniformLocation(drawShader->id, "lightColor"), 1.0, 1.0, 1.0); glUniform3f(glGetUniformLocation(drawShader->id, "lightPos"), 100.0, 300.0, 100.0); glUniform3f(glGetUniformLocation(drawShader->id, "viewPos"), camera.Position.x, camera.Position.y, camera.Position.z); glm::mat4 model = glm::mat4(1.0); glm::mat4 view = glm::mat4(1.0); glm::mat4 projection = glm::mat4(1.0); view = camera.GetViewMatrix(); projection = glm::perspective(glm::radians(camera.Zoom), 800.0f / 600.0f, 0.1f, 10000.0f); glUniformMatrix4fv(glGetUniformLocation(drawShader->id, "model"), 1, GL_FALSE, glm::value_ptr(model)); glUniformMatrix4fv(glGetUniformLocation(drawShader->id, "view"), 1, GL_FALSE, glm::value_ptr(view)); glUniformMatrix4fv(glGetUniformLocation(drawShader->id, "projection"), 1, GL_FALSE, glm::value_ptr(projection)); / //将波浪高度贴图绑定在GL_TEXTURE0 glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, g_textureResult[0]);//x glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, g_textureResult[1]);//y glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_2D, g_textureResult[2]);//z glActiveTexture(GL_TEXTURE3); glBindTexture(GL_TEXTURE_2D, g_textureNormal); / glBindVertexArray(VAO); //glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); glDrawElements(GL_TRIANGLES, (N - 1) * (N - 1) * 6, GL_UNSIGNED_INT, (void*)0); glfwSwapBuffers(window); glfwPollEvents(); } glDeleteVertexArrays(1, &VAO); glDeleteBuffers(1, &VBO); glDeleteBuffers(1, &EBO); glDeleteProgram(drawShader->id); glfwTerminate(); return 0; } float GeneratePhillipsSpectrum(glm::vec2 k) { float kLength = glm::length(k); kLength = std::max(0.001f, kLength); //kLength = 1; float kLength2 = kLength * kLength; float kLength4 = kLength2 * kLength2; // float k_dot_w = glm::dot(glm::normalize(k), glm::normalize(WindDir)); float k_dot_w2 = k_dot_w * k_dot_w; // float windLength = glm::length(WindDir); float l = windLength * windLength / G; float l2 = l * l; //修正因子(Phillips在|k|较大时收敛性较差,使用最后的exp修正参数来抑制较小波浪) float damping = 0.001; float L2 = l2 * damping * damping; //Phillips谱 return A * exp(-1.0f / (kLength2 * l2)) / kLength4 /** k_dot_w2*/ * exp(-kLength2 * L2); //*k_dot_w2为方向拓展,可以替换为Donelan-Banner定向传播* } float dispersion(glm::vec2 k) { return std::sqrt(G * glm::length(k)); } /// glm::vec2 ComputeGaussianRandom(int x, int y) { glm::vec2 g = gaussian(x, y); return g; } glm::vec2 gaussian(int x, int y) { //均匀分布随机数 unsigned int rngState = wangHash(y * N + x); float x1 = rand(rngState); float x2 = rand(rngState); x1 = std::max(1e-6f, x1); x2 = std::max(1e-6f, x2); //计算两个相互独立的高斯随机数 float g1 = sqrt(-2.0f * log(x1)) * cos(2.0f * PI * x2); float g2 = sqrt(-2.0f * log(x1)) * sin(2.0f * PI * x2); return glm::vec2(g1, g2); } unsigned int wangHash(unsigned int seed) { auto s = (seed ^ 61) ^ (seed >> 16); s *= 9; s = s ^ (s >> 4); s *= 0x27d4eb2d; s = s ^ (s >> 15); return s; } float rand(unsigned int& rngState) { // Xorshift算法 rngState ^= (rngState << 13); rngState ^= (rngState >> 17); rngState ^= (rngState << 5); return rngState / 4294967296.0f;; } //Donelan-Banner方向拓展 float DonelanBannerDirectionalSpreading(glm::vec2 k) { float betaS; float omegap = 0.855f * G / glm::length(WindDir); float ratio = dispersion(k) / omegap; if (ratio < 0.95f) { betaS = 2.61f * std::pow(ratio, 1.3f); } if (ratio >= 0.95f && ratio < 1.6f) { betaS = 2.28f * std::pow(ratio, -1.3f); } if (ratio > 1.6f) { float epsilon = -0.4f + 0.8393f * std::exp(-0.567f * std::log(ratio * ratio)); betaS = std::pow(10, epsilon); } float theta = std::atan2(k.y, k.x) - std::atan2(WindDir.y, WindDir.x); return betaS / std::max(1e-7, 2.0f * std::tanh(betaS * PI) * std::pow(std::cosh(betaS * theta), 2)); }
HeightSpectrum计算着色器:
#version 440 core const int LOCAL_WORK_GROUP_SIZE = 32; const int L = 512; const int N = 512; const float G = 9.81; const float PI = 3.141592653589; layout(binding = 0 ,rg32f) uniform image2D u_imageH0; layout(binding = 1 ,rg32f) uniform image2D u_imageH0Conj; layout(binding = 2 ,rg32f) uniform image2D u_imageOut; uniform float time; layout(local_size_x = LOCAL_WORK_GROUP_SIZE, local_size_y = LOCAL_WORK_GROUP_SIZE, local_size_z = 1) in; float dispersion(vec2 k); vec2 ComplexMultiply(vec2 complex_1, vec2 complex_2); void main() { //通过gl_GlobalInvocationID来得知当前执行单元在全局工作组中的位置 ivec2 storePos = ivec2(int(gl_GlobalInvocationID.x), int(gl_GlobalInvocationID.y)); //vec2 k = vec2(2.0f * PI * (storePos.x - N/2) / L, 2.0f * PI * (storePos.y - N/2) / L); vec2 k = vec2(2.0f * PI * storePos.x / N - PI, 2.0f * PI * storePos.y / N - PI); //根据位置storePos在贴图中采样得到数据 vec2 h0 = imageLoad(u_imageH0, storePos).xy; vec2 h0Conj = imageLoad(u_imageH0Conj, storePos).xy; float omegat = dispersion(k) * time; float c = cos(omegat); float s = sin(omegat); vec2 e1 = vec2(c,s); vec2 e2 = vec2(c,-s); vec2 h1 = ComplexMultiply(h0, e1); vec2 h2 = ComplexMultiply(h0Conj, e2); vec2 HTilde = h1 + h2; //将算出来的高度值存储到贴图当中 imageStore(u_imageOut, storePos, vec4(HTilde, 0.0, 0.0)); } float dispersion(vec2 k) { return sqrt(G * length(k)); } vec2 ComplexMultiply(vec2 complex_1, vec2 complex_2) { float real = complex_1.x * complex_2.x + complex_1.y * complex_2.y * -1.0; float imag = complex_1.x * complex_2.y + complex_1.y * complex_2.x; return vec2(real, imag); }
XZDisplacement计算着色器:
#version 440 core const int LOCAL_WORK_GROUP_SIZE = 32; const int L = 512; const int N = 512; const float PI = 3.141592653589; layout(binding = 0 ,rg32f) uniform image2D u_imageHt; layout(binding = 1 ,rg32f) uniform image2D u_imageDx; layout(binding = 2 ,rg32f) uniform image2D u_imageDz; layout(local_size_x = LOCAL_WORK_GROUP_SIZE, local_size_y = LOCAL_WORK_GROUP_SIZE, local_size_z = 1) in; vec2 ComplexMultiply(vec2 complex_1, vec2 complex_2); void main() { //通过gl_GlobalInvocationID来得知当前执行单元在全局工作组中的位置 ivec2 storePos = ivec2(int(gl_GlobalInvocationID.x), int(gl_GlobalInvocationID.y)); //vec2 k = vec2(2.0f * PI * (storePos.x - N/2) / L, 2.0f * PI * (storePos.y - N/2) / L); vec2 k = vec2(2.0f * PI * storePos.x / N - PI, 2.0f * PI * storePos.y / N - PI); k /= max(0.001f, length(k)); //根据位置storePos在贴图中采样得到数据 vec2 ht = imageLoad(u_imageHt, storePos).xy; vec2 xHTilde = ComplexMultiply(vec2(0.0,-k.x), ht); vec2 zHTilde = ComplexMultiply(vec2(0.0,-k.y), ht); //按公式还差e^ik·x不知道为什么没乘 //将算出来的高度值存储到贴图当中 imageStore(u_imageDx, storePos, vec4(xHTilde, 0.0, 0.0)); imageStore(u_imageDz, storePos, vec4(zHTilde, 0.0, 0.0)); } vec2 ComplexMultiply(vec2 complex_1, vec2 complex_2) { float real = complex_1.x * complex_2.x + complex_1.y * complex_2.y * -1.0; float imag = complex_1.x * complex_2.y + complex_1.y * complex_2.x; return vec2(real, imag); }
NormalBubbles计算着色器:
#version 440 core const int LOCAL_WORK_GROUP_SIZE = 32; const int L = 5110; const int N = 512; const float PI = 3.141592653589; layout(binding = 0 ,rg32f) uniform image2D u_imageDx; layout(binding = 1 ,rg32f) uniform image2D u_imageDy; layout(binding = 2 ,rg32f) uniform image2D u_imageDz; layout(binding = 3 ,rgba32f) uniform image2D u_imageNormal; //layout(binding = 4 ,rgba32f) uniform image2D u_imageBubbles; layout(local_size_x = LOCAL_WORK_GROUP_SIZE, local_size_y = LOCAL_WORK_GROUP_SIZE, local_size_z = 1) in; void main() { //通过gl_GlobalInvocationID来得知当前执行单元在全局工作组中的位置 ivec2 storePos = ivec2(int(gl_GlobalInvocationID.x), int(gl_GlobalInvocationID.y)); //计算法线 float uintLength = L / (N - 1.0f);//两点间单位长度 //获取当前点,周围4个点的uv坐标 ivec2 uvX1 = ivec2((storePos.x - 1 + N) % N, storePos.y); ivec2 uvX2 = ivec2((storePos.x + 1 + N) % N, storePos.y); ivec2 uvZ1 = ivec2(storePos.x, (storePos.y - 1 + N) % N); ivec2 uvZ2 = ivec2(storePos.x, (storePos.y + 1 + N) % N); //以当前点为中心,获取周围4个点的偏移值 vec3 x1D = vec3(imageLoad(u_imageDx, uvX1).x, imageLoad(u_imageDy, uvX1).x, imageLoad(u_imageDz, uvX1).x); vec3 x2D = vec3(imageLoad(u_imageDx, uvX2).x, imageLoad(u_imageDy, uvX2).x, imageLoad(u_imageDz, uvX2).x); vec3 z1D = vec3(imageLoad(u_imageDx, uvZ1).x, imageLoad(u_imageDy, uvZ1).x, imageLoad(u_imageDz, uvZ1).x); vec3 z2D = vec3(imageLoad(u_imageDx, uvZ2).x, imageLoad(u_imageDy, uvZ2).x, imageLoad(u_imageDz, uvZ2).x); //以当前点为原点,构建周围4个点的坐标 vec3 x1 = vec3(x1D.x - uintLength, x1D.yz); vec3 x2 = vec3(x2D.x + uintLength, x2D.yz); vec3 z1 = vec3(z1D.xy, z1D.z - uintLength); vec3 z2 = vec3(z2D.xy, z2D.z + uintLength); //计算两个切向量 vec3 tangentX = x2 - x1; vec3 tangentZ = z2 - z1; //计算法线 vec3 normal = normalize(cross(tangentZ, tangentX)); //计算泡沫 vec3 ddx = x2D - x1D; vec3 ddz = z2D - z1D; //雅可比行列式 float jacobian = (1.0f + ddx.x) * (1.0f + ddz.z) - ddx.z * ddz.x; //jacobian = saturate(max(0, BubblesThreshold - saturate(jacobian)) * BubblesScale); imageStore(u_imageNormal, storePos, vec4(normal, 0.0)); //imageStore(u_imageBubbles, storePos, vec4(jacobian, jacobian, jacobian, 0.0)); }
FFTHorizontal计算着色器:
#version 440 core const int LOCAL_WORK_GROUP_SIZE = 32; const int L = 512; const int N = 512; const float PI = 3.141592653589; uniform int u_steps; layout (binding = 0, rg32f) uniform image2D u_imageIn; layout (binding = 1, rg32f) uniform image2D u_imageOut; layout (binding = 2, r32f) uniform image1D u_imageIndices; //如果一个变量被声明为shared,那么它将被保存到特定的位置,从而对同一个本地工作组内的所有计算着色器请求可见,通常访问共享shared变量的性能会远远好于访问图像或者着色器存储缓存(例如主内存)的性能 shared vec2 sharedStore[N]; layout (local_size_x = LOCAL_WORK_GROUP_SIZE * 8, local_size_y = 1, local_size_z = 1) in; vec2 ComplexMultiply(vec2 complex_1, vec2 complex_2); vec2 RootOfUnitVector(int n, int k); void main() { int xIndex = int(gl_GlobalInvocationID.x); int yIndex = int(gl_GlobalInvocationID.y); int leftStoreIndex = 2 * xIndex; int rightStoreIndex = 2 * xIndex + 1; //读取索引(每一组有两个索引例如(0,4)) int leftLoadIndex = int(imageLoad(u_imageIndices, leftStoreIndex).r); int rightLoadIndex = int(imageLoad(u_imageIndices, rightStoreIndex).r); ivec2 leftLoadPos; ivec2 rightLoadPos; leftLoadPos = ivec2(leftLoadIndex, yIndex); rightLoadPos = ivec2(rightLoadIndex, yIndex); ivec2 leftStorePos; ivec2 rightStorePos; leftStorePos = ivec2(leftStoreIndex, yIndex); rightStorePos = ivec2(rightStoreIndex, yIndex); //从贴图中读取数据 vec2 leftValue = imageLoad(u_imageIn, leftLoadPos).xy; vec2 rightValue = imageLoad(u_imageIn, rightLoadPos).xy; //放入到共享缓存中 sharedStore[leftStoreIndex] = leftValue; sharedStore[rightStoreIndex] = rightValue; //确保所有数据都存储完毕(否则后续逻辑将无法读到所需的数据,即要保证时序) memoryBarrierShared(); barrier(); int numberButterfliesInSection = 1; int currentSection = xIndex; int currentButterfly = 0; //计算FFT for (int currentStep = 0; currentStep < u_steps; currentStep++) { //根据位置来获取该组所需的两个索引 int leftIndex = currentButterfly + currentSection * numberButterfliesInSection * 2; int rightIndex = currentButterfly + numberButterfliesInSection + currentSection * numberButterfliesInSection * 2; //从共享缓存中获得数据 leftValue = sharedStore[leftIndex]; rightValue = sharedStore[rightIndex]; vec2 currentW = RootOfUnitVector(numberButterfliesInSection * 2, currentButterfly); vec2 multiply; vec2 addition; vec2 subtraction; multiply = ComplexMultiply(currentW, rightValue); addition = leftValue + multiply; subtraction = leftValue - multiply; if(currentStep == u_steps-1) { sharedStore[leftIndex] = -addition; sharedStore[rightIndex] = -subtraction; } else { sharedStore[leftIndex] = addition; sharedStore[rightIndex] = subtraction; } //确保所有数据计算并存储完毕 memoryBarrierShared(); //根据蝴蝶算法来改变参数 numberButterfliesInSection *= 2; currentSection /= 2; currentButterfly = xIndex % numberButterfliesInSection; //确保所有的计算着色器都计算完毕 barrier(); } int x1 = leftStoreIndex - N/2; int x2 = rightStoreIndex - N/2; int c1 = abs(x1)%2==0?1:-1; int c2 = abs(x2)%2==0?1:-1; imageStore(u_imageOut, leftStorePos, vec4(c1 * sharedStore[leftStoreIndex], 0.0, 0.0)); imageStore(u_imageOut, rightStorePos, vec4(c2 * sharedStore[rightStoreIndex], 0.0, 0.0)); } vec2 ComplexMultiply(vec2 complex_1, vec2 complex_2) { float real = complex_1.x * complex_2.x + complex_1.y * complex_2.y * -1.0; float imag = complex_1.x * complex_2.y + complex_1.y * complex_2.x; return vec2(real, imag); } //转换成单位根向量 vec2 RootOfUnitVector(int n, int k) { vec2 result; result.x = cos(2.0 * PI * float(k) / float(n)); result.y = sin(2.0 * PI * float(k) / float(n)); return result; }
FFTVertical计算着色器:
#version 440 core const int LOCAL_WORK_GROUP_SIZE = 32; const int L = 512; const int N = 512; const float PI = 3.141592653589; uniform int u_steps; layout (binding = 0, rg32f) uniform image2D u_imageIn; layout (binding = 1, rg32f) uniform image2D u_imageOut; layout (binding = 2, r32f) uniform image1D u_imageIndices; //如果一个变量被声明为shared,那么它将被保存到特定的位置,从而对同一个本地工作组内的所有计算着色器请求可见,通常访问共享shared变量的性能会远远好于访问图像或者着色器存储缓存(例如主内存)的性能 shared vec2 sharedStore[N]; layout (local_size_x = 1, local_size_y = LOCAL_WORK_GROUP_SIZE * 8, local_size_z = 1) in; vec2 ComplexMultiply(vec2 complex_1, vec2 complex_2); vec2 RootOfUnitVector(int n, int k); void main() { int xIndex = int(gl_GlobalInvocationID.x); int yIndex = int(gl_GlobalInvocationID.y); int leftStoreIndex = 2 * yIndex; int rightStoreIndex = 2 * yIndex + 1; //读取索引(每一组有两个索引例如(0,4)) int leftLoadIndex = int(imageLoad(u_imageIndices, leftStoreIndex).r); int rightLoadIndex = int(imageLoad(u_imageIndices, rightStoreIndex).r); ivec2 leftLoadPos; ivec2 rightLoadPos; leftLoadPos = ivec2(xIndex, leftLoadIndex); rightLoadPos = ivec2(xIndex, rightLoadIndex); ivec2 leftStorePos; ivec2 rightStorePos; leftStorePos = ivec2(xIndex, leftStoreIndex); rightStorePos = ivec2(xIndex, rightStoreIndex); //从贴图中读取数据 vec2 leftValue = imageLoad(u_imageIn, leftLoadPos).xy; vec2 rightValue = imageLoad(u_imageIn, rightLoadPos).xy; //放入到共享缓存中 sharedStore[leftStoreIndex] = leftValue; sharedStore[rightStoreIndex] = rightValue; //确保所有数据都存储完毕(否则后续逻辑将无法读到所需的数据,即要保证时序) memoryBarrierShared(); barrier(); int numberButterfliesInSection = 1; int currentSection = yIndex; int currentButterfly = 0; //计算FFT for (int currentStep = 0; currentStep < u_steps; currentStep++) { //根据位置来获取该组所需的两个索引 int leftIndex = currentButterfly + currentSection * numberButterfliesInSection * 2; int rightIndex = currentButterfly + numberButterfliesInSection + currentSection * numberButterfliesInSection * 2; //从共享缓存中获得数据 leftValue = sharedStore[leftIndex]; rightValue = sharedStore[rightIndex]; vec2 currentW = RootOfUnitVector(numberButterfliesInSection * 2, currentButterfly); vec2 multiply; vec2 addition; vec2 subtraction; multiply = ComplexMultiply(currentW, rightValue); addition = leftValue + multiply; subtraction = leftValue - multiply; if(currentStep == u_steps-1) { sharedStore[leftIndex] = -addition; sharedStore[rightIndex] = -subtraction; } else { sharedStore[leftIndex] = addition; sharedStore[rightIndex] = subtraction; } //确保所有数据计算并存储完毕 memoryBarrierShared(); //根据蝴蝶算法来改变参数 numberButterfliesInSection *= 2; currentSection /= 2; currentButterfly = yIndex % numberButterfliesInSection; //确保所有的计算着色器都计算完毕 barrier(); } int z1 = leftStoreIndex - N/2; int z2 = rightStoreIndex - N/2; int c1 = abs(z1)%2==0?1:-1; int c2 = abs(z2)%2==0?1:-1; imageStore(u_imageOut, leftStorePos, vec4(c1 * sharedStore[leftStoreIndex], 0.0, 0.0)); imageStore(u_imageOut, rightStorePos, vec4(c2 * sharedStore[rightStoreIndex], 0.0, 0.0)); } vec2 ComplexMultiply(vec2 complex_1, vec2 complex_2) { float real = complex_1.x * complex_2.x + complex_1.y * complex_2.y * -1.0; float imag = complex_1.x * complex_2.y + complex_1.y * complex_2.x; return vec2(real, imag); } //转换成单位根向量 vec2 RootOfUnitVector(int n, int k) { vec2 result; result.x = cos(2.0 * PI * float(k) / float(n)); result.y = sin(2.0 * PI * float(k) / float(n)); return result; }
顶点和片元着色器:
#version 440 core layout (location = 0) in vec3 aPos; layout (location = 1) in vec2 aTexCoord; layout(binding = 0) uniform sampler2D u_displacementMapX; layout(binding = 1) uniform sampler2D u_displacementMapY; layout(binding = 2) uniform sampler2D u_displacementMapZ; layout(binding = 3) uniform sampler2D u_normal; out vec2 textureCoord; out vec3 verNormal; out vec3 FragPos; uniform mat4 model; uniform mat4 view; uniform mat4 projection; void main() { vec3 displacementX = vec3(texture(u_displacementMapX, aTexCoord).r, 0.0, 0.0); vec3 displacementY = vec3(0.0, texture(u_displacementMapY, aTexCoord).r, 0.0); vec3 displacementZ = vec3(0.0, 0.0, texture(u_displacementMapZ, aTexCoord).r); vec3 normal = texture(u_normal,aTexCoord).rgb; gl_Position = projection*view*model*vec4(aPos+displacementX+displacementY+displacementZ, 1.0); textureCoord = aTexCoord; verNormal = normal; FragPos = (model*vec4(aPos+displacementX+displacementY+displacementZ, 1.0)).xyz; }
#version 440 core in vec2 textureCoord; in vec3 verNormal; in vec3 FragPos; uniform vec3 lightColor; uniform vec3 lightPos; uniform vec3 viewPos; out vec4 FragColor; void main() { //环境光 vec3 ambient = lightColor * 0.6; //漫反射 vec3 norm = normalize(verNormal); vec3 lightDir = normalize(lightPos - FragPos); float diff = max(dot(norm, lightDir), 0.0); vec3 diffuse = diff * lightColor; //镜面光 vec3 viewDir = normalize(viewPos - FragPos); vec3 reflectDir = reflect(-lightDir, norm); float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32); vec3 specular = 0.5 * spec * lightColor; //菲涅尔 float R0 = 0.02; float cosTheta = dot(viewDir, norm); float R = R0 + (1 - R0) * pow(1 - cosTheta, 5.0); vec3 fresnel = vec3(R); vec3 re = (ambient + diffuse + specular) * vec4(0.0627, 0.145, 0.25, 1.0).xyz; re += fresnel * lightColor * 0.5; FragColor = vec4(re, 1.0); }
实现效果比较基本和简单,波浪效果感觉不算特别理想,并且只添加了基本的光照效果,后续再继续完善。
1、蝴蝶变换的起始索引计算有误,之前没仔细看,参考8 point蝶形网络单纯当成了将索引奇偶对半分然后相互交错的规律(8 point的情况:0、4、2、6、1、5、3、7),再看了一遍,发现其实是将原索引值bit反序算出的新索引。
图源:参考文章【3】
所以这里新增函数:(随便写写,因为整个索引只算一次就不考虑算法效率了,大佬见谅)
int bitreverse(int bit, int in) { int* v = new int[bit]; int t = in; for (int i = bit - 1; i >= 0; i--) { int s = t / 2; v[i] = t % 2; t = s; } t = 0; for (int j = bit - 1; j >= 0; j--) { if (v[j] == 1) { t += std::pow(2, j); } } delete[] v; return t; }
以及修改原来的索引计算:
float* butterflyIndices = new float[N];
for (int i = 0; i < N; i++)
{
butterflyIndices[i] = bitreverse(BUTTERFLY_STEPS, i);
}
2、修改参数WindDir为(10.0, 20.0),修改参数A为0.00005,最终效果:
波浪整体都有了较大的起伏,不再像原来那样是一种许多小水波的感觉,接近了参考文章【1】中的效果。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。