赞
踩
这是这个系列文章中的其中一篇文章:
在今天的文章中,我将详述如何对索引进行搜索。在进行下面的练习之前,我们先使用 Kibana 创建如下的一个叫做 twitter 的索引:
- PUT twitter
- {
- "mappings": {
- "properties": {
- "DOB": {
- "type": "date"
- },
- "address": {
- "type": "text",
- "fields": {
- "keyword": {
- "type": "keyword",
- "ignore_above": 256
- }
- }
- },
- "age": {
- "type": "long"
- },
- "city": {
- "type": "text",
- "fields": {
- "keyword": {
- "type": "keyword",
- "ignore_above": 256
- }
- }
- },
- "country": {
- "type": "text",
- "fields": {
- "keyword": {
- "type": "keyword",
- "ignore_above": 256
- }
- }
- },
- "location": {
- "type": "geo_point"
- },
- "message": {
- "type": "text",
- "fields": {
- "keyword": {
- "type": "keyword",
- "ignore_above": 256
- }
- }
- },
- "province": {
- "type": "text",
- "fields": {
- "keyword": {
- "type": "keyword",
- "ignore_above": 256
- }
- }
- },
- "uid": {
- "type": "long"
- },
- "user": {
- "type": "text",
- "fields": {
- "keyword": {
- "type": "keyword",
- "ignore_above": 256
- }
- }
- }
- }
- }
- }

在上面,我们创建了一个叫做 twitter 的索引。如果你对上面命令还不是很清楚的话,请参阅我之前的文章 “开始使用 Elasticsearch (2)”。我们接着使用如下的命令来导入文档:
- POST twitter/_bulk
- {"index":{"_id":1}}
- {"user":"双榆树-张三","DOB":"1992-08-03","message":"今儿天气不错啊,出去转转去","uid":1,"age":30,"city":"北京","province":"北京","country":"中国","address":"中国北京市海淀区","location":{"lat":"39.970718","lon":"116.325747"}}
- {"index":{"_id":2}}
- {"user":"东城区-老刘","DOB":"1990-07-14","message":"出发,下一站云南!","uid":2,"age":32,"city":"北京","province":"北京","country":"中国","address":"中国北京市东城区台基厂三条3号","location":{"lat":"39.904313","lon":"116.412754"}}
- {"index":{"_id":3}}
- {"user":"东城区-李四","DOB":"1997-09-23","message":"happy birthday!","uid":3,"age":25,"city":"北京","province":"北京","country":"中国","address":"中国北京市东城区","location":{"lat":"39.893801","lon":"116.408986"}}
- {"index":{"_id":4}}
- {"user":"朝阳区-老贾","DOB":"1980-06-30","message":"123,gogogo","uid":4,"age":42,"city":"北京","province":"北京","country":"中国","address":"中国北京市朝阳区建国门","location":{"lat":"39.718256","lon":"116.367910"}}
- {"index":{"_id":5}}
- {"user":"朝阳区-老王","DOB":"1996-06-18","message":"Happy BirthDay My Friend!","uid":5,"age":26,"city":"北京","province":"北京","country":"中国","address":"中国北京市朝阳区国贸","location":{"lat":"39.918256","lon":"116.467910"}}
- {"index":{"_id":6}}
- {"user":"虹桥-老吴","DOB":"2000-04-05","message":"好友来了都今天我生日,好友来了,什么 birthday happy 就成!","uid":7,"age":22,"city":"上海","province":"上海","country":"中国","address":"中国上海市闵行区","location":{"lat":"31.175927","lon":"121.383328"}}
请注意上面的 DOB 代表的是 date of birth,也就是生日。我们可以使用如下的命令来进行查看文档的数量:
GET twitter/_count
上面会显示 6 个文档。
为了方便大家对代码的理解,我把最终的代码置于 github:https://github.com/liu-xiao-guo/ElasticsearchJava-search。你可以使用如下的命令来下载代码:
git clone https://github.com/liu-xiao-guo/ElasticsearchJava-search
我们可以参考之前的文章:
用自己喜欢的 IDE 来创建一个最为基本的 Java 项目。这里就不再累述。关于如何创建和 Elasticsearch 之间的连接,请参考上面的两篇文章。在接下来的描述中,我将详细讲解如何使用代码来进行搜索。
我们使用 Java 来搜索所有的文档:
- // Search 1: Search for all documents
- System.out.println("****************** Search 1");
- SearchRequest searchRequest = new SearchRequest();
- searchRequest.indices(INDEX_NAME);
- SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
- searchSourceBuilder.query(QueryBuilders.matchAllQuery());
- searchRequest.source(searchSourceBuilder);
- Map<String, Object> map=null;
-
- try {
- SearchResponse searchResponse = null;
- searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
- if (searchResponse.getHits().getTotalHits().value > 0) {
- SearchHit[] searchHit = searchResponse.getHits().getHits();
- for (SearchHit hit : searchHit) {
- map = hit.getSourceAsMap();
- System.out.println("map:" + Arrays.toString(map.entrySet().toArray()));
-
- }
- }
- } catch (IOException e) {
- e.printStackTrace();
- }

在上面,我们使用 QueryBuilders.matchAllQuery() 来查询所有的文档。上面的命令和 Kibana 中的如下的命令是一样的:
GET twitter/_search
运行上面的代码。它的运行结果是:
- ****************** Search 1
- map:[uid=1, country=中国, address=中国北京市海淀区, province=北京, city=北京, DOB=1992-08-03, location={lon=116.325747, lat=39.970718}, message=今儿天气不错啊,出去转转去, user=双榆树-张三, age=30]
- map:[uid=2, country=中国, address=中国北京市东城区台基厂三条3号, province=北京, city=北京, DOB=1990-07-14, location={lon=116.412754, lat=39.904313}, message=出发,下一站云南!, user=东城区-老刘, age=32]
- map:[uid=3, country=中国, address=中国北京市东城区, province=北京, city=北京, DOB=1997-09-23, location={lon=116.408986, lat=39.893801}, message=happy birthday!, user=东城区-李四, age=25]
- map:[uid=4, country=中国, address=中国北京市朝阳区建国门, province=北京, city=北京, DOB=1980-06-30, location={lon=116.367910, lat=39.718256}, message=123,gogogo, user=朝阳区-老贾, age=42]
- map:[uid=5, country=中国, address=中国北京市朝阳区国贸, province=北京, city=北京, DOB=1996-06-18, location={lon=116.467910, lat=39.918256}, message=Happy BirthDay My Friend!, user=朝阳区-老王, age=26]
- map:[uid=7, country=中国, address=中国上海市闵行区, province=上海, city=上海, DOB=2000-04-05, location={lon=121.383328, lat=31.175927}, message=好友来了都今天我生日,好友来了,什么 birthday happy 就成!, user=虹桥-老吴, age=22]
从上面的输出中,我们可以看出来:它搜索到所有的结果。
- // Search 2:
- System.out.println("****************** Search 2");
- SearchSourceBuilder builder = new SearchSourceBuilder()
- .postFilter(QueryBuilders.rangeQuery("age").from(25).to(30));
-
- SearchRequest searchRequest2 = new SearchRequest();
- searchRequest2.indices(INDEX_NAME);
- searchRequest2.searchType(SearchType.DFS_QUERY_THEN_FETCH);
- searchRequest2.source(builder);
-
- try {
- SearchResponse searchResponse = null;
- searchResponse = client.search(searchRequest2, RequestOptions.DEFAULT);
- if (searchResponse.getHits().getTotalHits().value > 0) {
- SearchHit[] searchHit = searchResponse.getHits().getHits();
- for (SearchHit hit : searchHit) {
- map = hit.getSourceAsMap();
- System.out.println("map:" + Arrays.toString(map.entrySet().toArray()));
-
- }
- }
- } catch (IOException e) {
- e.printStackTrace();
- }

在上面,我们搜索年龄在 25 岁和 30 岁之间的所有文档。上面的命令类似于 Kibana 中的如下搜索:
- GET twitter/_search
- {
- "query": {
- "match_all": {}
- },
- "post_filter": {
- "range": {
- "age": {
- "gte": 25,
- "lte": 30
- }
- }
- }
- }
运行上面的应用,搜索二的输出结果为:
- ****************** Search 2
- map:[uid=1, country=中国, address=中国北京市海淀区, province=北京, city=北京, DOB=1992-08-03, location={lon=116.325747, lat=39.970718}, message=今儿天气不错啊,出去转转去, user=双榆树-张三, age=30]
- map:[uid=3, country=中国, address=中国北京市东城区, province=北京, city=北京, DOB=1997-09-23, location={lon=116.408986, lat=39.893801}, message=happy birthday!, user=东城区-李四, age=25]
- map:[uid=5, country=中国, address=中国北京市朝阳区国贸, province=北京, city=北京, DOB=1996-06-18, location={lon=116.467910, lat=39.918256}, message=Happy BirthDay My Friend!, user=朝阳区-老王, age=26]
从上面的结果中可以看出来 age 在 25 岁和 30 岁之间的文档有 3 个。
- // Search 3:
- System.out.println("****************** Search 3");
- SearchSourceBuilder builder3 = new SearchSourceBuilder();
- builder3.from(0);
- builder3.size(2);
- builder3.timeout(new TimeValue(60, TimeUnit.SECONDS));
- builder3.query(QueryBuilders.matchQuery("user", "朝阳"));
-
- SearchRequest searchRequest3 = new SearchRequest();
- searchRequest3.indices(INDEX_NAME);
- searchRequest3.searchType(SearchType.DFS_QUERY_THEN_FETCH);
- searchRequest3.source(builder3);
- try {
- SearchResponse searchResponse = null;
- searchResponse = client.search(searchRequest3, RequestOptions.DEFAULT);
- if (searchResponse.getHits().getTotalHits().value > 0) {
- SearchHit[] searchHit = searchResponse.getHits().getHits();
- for (SearchHit hit : searchHit) {
- map = hit.getSourceAsMap();
- System.out.println("map:" + Arrays.toString(map.entrySet().toArray()));
-
- }
- }
- } catch (IOException e) {
- e.printStackTrace();
- }

我们在所有的文档里搜索字段 user 含有 “朝阳”,并返回第一个 page 的结果。上述搜索相当于在 Kibana 中的如下命令:
- GET twitter/_search
- {
- "from": 0,
- "size": 2,
- "query": {
- "match": {
- "user": "朝阳"
- }
- }
- }
运行上面的代码。它的显示结果为:
- ****************** Search 3
- map:[uid=4, country=中国, address=中国北京市朝阳区建国门, province=北京, city=北京, DOB=1980-06-30, location={lon=116.367910, lat=39.718256}, message=123,gogogo, user=朝阳区-老贾, age=42]
- map:[uid=5, country=中国, address=中国北京市朝阳区国贸, province=北京, city=北京, DOB=1996-06-18, location={lon=116.467910, lat=39.918256}, message=Happy BirthDay My Friend!, user=朝阳区-老王, age=26]
上面的结果显示 user 字段含有 “朝阳”,并且它的文档数是 2,也就是 page size 是 2。
在很多的时候,我们使用复合查询来得到所需要的文档。关于复合查询的理解,请参阅我之前的文章 “开始使用 Elasticsearch (2)”。它一般具有如下的一个形式:
- POST _search
- {
- "query": {
- "bool" : {
- "must" : {
- "term" : { "user" : "kimchy" }
- },
- "filter": {
- "term" : { "tag" : "tech" }
- },
- "must_not" : {
- "range" : {
- "age" : { "gte" : 10, "lte" : 20 }
- }
- },
- "should" : [
- { "term" : { "tag" : "wow" } },
- { "term" : { "tag" : "elasticsearch" } }
- ],
- "minimum_should_match" : 1,
- "boost" : 1.0
- }
- }
- }

它由 must,must_not 及 should 组成的布尔查询。
- // Search 4:
- System.out.println("****************** Search 4");
- MatchQueryBuilder matchQueryBuilder = new MatchQueryBuilder("user", "朝阳");
- MatchQueryBuilder matchQueryBuilder1 = new MatchQueryBuilder("address", "北京");
-
- RangeQueryBuilder rangeQueryBuilder = new RangeQueryBuilder("age").from(25).to(30);
- BoolQueryBuilder boolQueryBuilder = new BoolQueryBuilder()
- .must(matchQueryBuilder)
- .must(matchQueryBuilder1)
- .should(rangeQueryBuilder);
-
- SearchSourceBuilder builder4 = new SearchSourceBuilder().query(boolQueryBuilder);
- builder4.from(0);
- builder4.size(2);
- builder4.timeout(new TimeValue(60, TimeUnit.SECONDS));
- builder4.sort("DOB", SortOrder.ASC);
-
- SearchRequest searchRequest4 = new SearchRequest();
- searchRequest4.indices(INDEX_NAME);
- searchRequest4.searchType(SearchType.DFS_QUERY_THEN_FETCH);
- searchRequest4.source(builder4);
- try {
- SearchResponse searchResponse = null;
- searchResponse = client.search(searchRequest4, RequestOptions.DEFAULT);
- if (searchResponse.getHits().getTotalHits().value > 0) {
- SearchHit[] searchHit = searchResponse.getHits().getHits();
- for (SearchHit hit : searchHit) {
- map = hit.getSourceAsMap();
- System.out.println("map:" + Arrays.toString(map.entrySet().toArray()));
-
- }
- }
- } catch (IOException e) {
- e.printStackTrace();
- }

在上面,我们使用 must 及 should 组成的 bool 查询。它相当于在 Kibana 中的如下命令:
- GET twitter/_search
- {
- "from": 0,
- "size": 2,
- "query": {
- "bool": {
- "must": [
- {
- "match": {
- "user": "朝阳"
- }
- },
- {
- "match": {
- "address": "北京"
- }
- }
- ],
- "should": [
- {
- "range": {
- "age": {
- "gte": 25,
- "lte": 30
- }
- }
- }
- ]
- }
- },
- "sort": [
- {
- "DOB": {
- "order": "asc"
- }
- }
- ]
- }

在 Kibana 中运行上面的命令:
- {
- "took" : 8,
- "timed_out" : false,
- "_shards" : {
- "total" : 1,
- "successful" : 1,
- "skipped" : 0,
- "failed" : 0
- },
- "hits" : {
- "total" : {
- "value" : 2,
- "relation" : "eq"
- },
- "max_score" : null,
- "hits" : [
- {
- "_index" : "twitter",
- "_type" : "_doc",
- "_id" : "4",
- "_score" : null,
- "_source" : {
- "user" : "朝阳区-老贾",
- "DOB" : "1980-06-30",
- "message" : "123,gogogo",
- "uid" : 4,
- "age" : 42,
- "city" : "北京",
- "province" : "北京",
- "country" : "中国",
- "address" : "中国北京市朝阳区建国门",
- "location" : {
- "lat" : "39.718256",
- "lon" : "116.367910"
- }
- },
- "sort" : [
- 331171200000
- ]
- },
- {
- "_index" : "twitter",
- "_type" : "_doc",
- "_id" : "5",
- "_score" : null,
- "_source" : {
- "user" : "朝阳区-老王",
- "DOB" : "1996-06-18",
- "message" : "Happy BirthDay My Friend!",
- "uid" : 5,
- "age" : 26,
- "city" : "北京",
- "province" : "北京",
- "country" : "中国",
- "address" : "中国北京市朝阳区国贸",
- "location" : {
- "lat" : "39.918256",
- "lon" : "116.467910"
- }
- },
- "sort" : [
- 835056000000
- ]
- }
- ]
- }
- }

我们可以看到是按照 DOB 进行排序的。
运行我们的代码:
- ****************** Search 4
- map:[uid=4, country=中国, address=中国北京市朝阳区建国门, province=北京, city=北京, DOB=1980-06-30, location={lon=116.367910, lat=39.718256}, message=123,gogogo, user=朝阳区-老贾, age=42]
- map:[uid=5, country=中国, address=中国北京市朝阳区国贸, province=北京, city=北京, DOB=1996-06-18, location={lon=116.467910, lat=39.918256}, message=Happy BirthDay My Friend!, user=朝阳区-老王, age=26]
在返回结果中,也是按照 DOB 降序来排列的。
也许有的同学要问,为啥 age 为 42 的文档 4 被搜索到了啊?这个就是 should 的作用。如果在 should 里的条件满足,那么搜索的结果就会加分。当然由于我们使用 sort 进行重新排序,所以得到的分数没有任何的意义。
在很多的时候,我们希望搜索的结果是带有 highlight 的那么,我们该怎么办呢?我们可以参考之前的文章 “开始使用 Elasticsearch (2)” 查询 highlighting 部分。
假如我们想实现如下的 highlight:
- GET twitter/_search
- {
- "from": 0,
- "size": 2,
- "query": {
- "bool": {
- "must": [
- {
- "match": {
- "user": "朝阳"
- }
- },
- {
- "match": {
- "address": "北京"
- }
- }
- ],
- "should": [
- {
- "range": {
- "age": {
- "gte": 25,
- "lte": 30
- }
- }
- }
- ]
- }
- },
- "sort": [
- {
- "DOB": {
- "order": "asc"
- }
- }
- ],
- "highlight": {
- "pre_tags": ["<my_tag>"],
- "post_tags": ["</my_tag>"],
- "fields": {
- "user": {}
- }
- }
- }

如上所示,我们定制了 highlight 的 tag: my_tag。上面搜索的返回结果是:
- {
- "took" : 4,
- "timed_out" : false,
- "_shards" : {
- "total" : 1,
- "successful" : 1,
- "skipped" : 0,
- "failed" : 0
- },
- "hits" : {
- "total" : {
- "value" : 2,
- "relation" : "eq"
- },
- "max_score" : null,
- "hits" : [
- {
- "_index" : "twitter",
- "_type" : "_doc",
- "_id" : "4",
- "_score" : null,
- "_source" : {
- "user" : "朝阳区-老贾",
- "DOB" : "1980-06-30",
- "message" : "123,gogogo",
- "uid" : 4,
- "age" : 42,
- "city" : "北京",
- "province" : "北京",
- "country" : "中国",
- "address" : "中国北京市朝阳区建国门",
- "location" : {
- "lat" : "39.718256",
- "lon" : "116.367910"
- }
- },
- "highlight" : {
- "user" : [
- "<my_tag>朝</my_tag><my_tag>阳</my_tag>区-老贾"
- ]
- },
- "sort" : [
- 331171200000
- ]
- },
- {
- "_index" : "twitter",
- "_type" : "_doc",
- "_id" : "5",
- "_score" : null,
- "_source" : {
- "user" : "朝阳区-老王",
- "DOB" : "1996-06-18",
- "message" : "Happy BirthDay My Friend!",
- "uid" : 5,
- "age" : 26,
- "city" : "北京",
- "province" : "北京",
- "country" : "中国",
- "address" : "中国北京市朝阳区国贸",
- "location" : {
- "lat" : "39.918256",
- "lon" : "116.467910"
- }
- },
- "highlight" : {
- "user" : [
- "<my_tag>朝</my_tag><my_tag>阳</my_tag>区-老王"
- ]
- },
- "sort" : [
- 835056000000
- ]
- }
- ]
- }
- }

如上所示,“朝” 及 “阳” 分别被标注。它们是分词的结果。在返回结果的 highlight 部分,我们可以看到它们被 <my_tag> 及 </my_tag> 所标注。我们针对 use 字段进行 highlight。那么我们该如何实现这个 highlight 呢?
- // Search 5: highlight
- System.out.println("****************** Search 5");
- HighlightBuilder highlightBuilder = new HighlightBuilder()
- .postTags("<mytag>")
- .preTags("</mytag>")
- .field("user");
-
- MatchQueryBuilder matchQueryBuilder3 = new MatchQueryBuilder("user", "朝阳");
- MatchQueryBuilder matchQueryBuilder4 = new MatchQueryBuilder("address", "北京");
-
- RangeQueryBuilder rangeQueryBuilder5 = new RangeQueryBuilder("age").from(25).to(30);
- BoolQueryBuilder boolQueryBuilder5 = new BoolQueryBuilder()
- .must(matchQueryBuilder)
- .must(matchQueryBuilder3)
- .should(rangeQueryBuilder5);
-
- SearchSourceBuilder builder5 = new SearchSourceBuilder().query(boolQueryBuilder5);
- builder5.from(0);
- builder5.size(2);
- builder5.timeout(new TimeValue(60, TimeUnit.SECONDS));
- builder5.sort("DOB", SortOrder.ASC);
- builder5.highlighter(highlightBuilder);
-
- SearchRequest searchRequest5 = new SearchRequest();
- searchRequest5.indices(INDEX_NAME);
- searchRequest5.searchType(SearchType.DFS_QUERY_THEN_FETCH);;
- searchRequest5.source(builder5);
- try {
- SearchResponse searchResponse = null;
- searchResponse = client.search(searchRequest5, RequestOptions.DEFAULT);
-
- System.out.println(searchResponse);
-
- } catch (IOException e) {
- e.printStackTrace();
- }

在上面,我们添加了 highlight 的部分。运行上面的结果为:
- {
- "took":25,
- "timed_out":false,
- "_shards":{
- "total":1,
- "successful":1,
- "skipped":0,
- "failed":0
- },
- "hits":{
- "total":{
- "value":2,
- "relation":"eq"
- },
- "max_score":null,
- "hits":[
- {
- "_index":"twitter",
- "_type":"_doc",
- "_id":"4",
- "_score":null,
- "_source":{
- "user":"朝阳区-老贾",
- "DOB":"1980-06-30",
- "message":"123,gogogo",
- "uid":4,
- "age":42,
- "city":"北京",
- "province":"北京",
- "country":"中国",
- "address":"中国北京市朝阳区建国门",
- "location":{
- "lat":"39.718256",
- "lon":"116.367910"
- }
- },
- "highlight":{
- "user":[
- "</mytag>朝<mytag></mytag>阳<mytag>区-老贾"
- ]
- },
- "sort":[
- 331171200000
- ]
- },
- {
- "_index":"twitter",
- "_type":"_doc",
- "_id":"5",
- "_score":null,
- "_source":{
- "user":"朝阳区-老王",
- "DOB":"1996-06-18",
- "message":"Happy BirthDay My Friend!",
- "uid":5,
- "age":26,
- "city":"北京",
- "province":"北京",
- "country":"中国",
- "address":"中国北京市朝阳区国贸",
- "location":{
- "lat":"39.918256",
- "lon":"116.467910"
- }
- },
- "highlight":{
- "user":[
- "</mytag>朝<mytag></mytag>阳<mytag>区-老王"
- ]
- },
- "sort":[
- 835056000000
- ]
- }
- ]
- }
- }

从上面的输出结果中,我们可以看出来 “朝” 及 “阳” 被分别 highlight 了。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。