赞
踩
首先看一个线程池的简单例子:
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
- import java.util.concurrent.TimeUnit;
-
- public class FixThreadPoolTest {
- public static void main(String[] args) {
- ExecutorService pool = Executors.newFixedThreadPool(6);
- for (int i = 0; i < 50; i++) {
- pool.execute(new Runnable() {
- @Override
- public void run() {
- try {
- TimeUnit.SECONDS.sleep(1);
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- System.out.println("hello world! Execute ThreadName=" + Thread.currentThread().getName());
- }
- });
- }
- pool.shutdown();
- }
- }

本文将从源码角度分析线程池的创建,线程的提交,线程池的执行策略,线程池阻塞队列,线程池参数含义,最后线程池的关闭角度来分析。
首先看第一点,分析ExecutorService,Executors源码
- public interface ExecutorService extends Executor {
- void shutdown();
-
- List<Runnable> shutdownNow();
-
- boolean isShutdown();
-
- boolean isTerminated();
-
- boolean awaitTermination(long timeout, TimeUnit unit)
- throws InterruptedException;
-
- <T> Future<T> submit(Callable<T> task);
-
- <T> Future<T> submit(Runnable task, T result);
-
- Future<?> submit(Runnable task);
-
- <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
- throws InterruptedException;
-
- <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
- long timeout, TimeUnit unit)
- throws InterruptedException;
-
- <T> T invokeAny(Collection<? extends Callable<T>> tasks)
- throws InterruptedException, ExecutionException;
-
- <T> T invokeAny(Collection<? extends Callable<T>> tasks,
- long timeout, TimeUnit unit)
- throws InterruptedException, ExecutionException, TimeoutException;
- }

先来看ExecutorService接口的定义:ExecutorService 是个接口,并且继承了Executor接口,Executor中只定义了一个execute方法。该方法接收一个线程作为参数,显然是用来执行一个提交上来的线程。
对于ExecutorService接口,它主要定义了终止线程的方法和异步追踪每个线程回调结果的能力。并且它是可以被关闭的,当他被关闭的时候,会拒绝新的任务的提交。ExecutorService线程池的关闭有两种方法:shutdown和shutdownnow,前者被调用后,会拒绝新的任务提交,但是会等待队列里的线程和线程池中的线程执行完毕。后者会阻止新任务的启动,并且会尝试终止线程池中正在运行的任务。
我们基本可以认为ExecutorService就是一个线程池的父接口。该接口定义了线程池的一些必备比较高层次抽象的方法。
再来看第二点,来分析一下线程池的核心参数
对于线程池的具体创建,这里定义了一个固定线程数量为6的线程池.创建过程调用了newFixedThreadPool方法:
- public static ExecutorService newFixedThreadPool(int nThreads) {
- return new ThreadPoolExecutor(nThreads, nThreads,
- 0L, TimeUnit.MILLISECONDS,
- new LinkedBlockingQueue<Runnable>());
- }
该方法调用了ThreadPoolExecutor这个构造方法。
- public ThreadPoolExecutor(int corePoolSize,
- int maximumPoolSize,
- long keepAliveTime,
- TimeUnit unit,
- BlockingQueue<Runnable> workQueue) {
- this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
- Executors.defaultThreadFactory(), defaultHandler);
- }
接着调用了ThreadPoolExecutor的重载方法:
- public ThreadPoolExecutor(int corePoolSize,
- int maximumPoolSize,
- long keepAliveTime,
- TimeUnit unit,
- BlockingQueue<Runnable> workQueue,
- ThreadFactory threadFactory,
- RejectedExecutionHandler handler) {
- if (corePoolSize < 0 ||
- maximumPoolSize <= 0 ||
- maximumPoolSize < corePoolSize ||
- keepAliveTime < 0)
- throw new IllegalArgumentException();
- if (workQueue == null || threadFactory == null || handler == null)
- throw new NullPointerException();
- this.acc = System.getSecurityManager() == null ?
- null :
- AccessController.getContext();
- this.corePoolSize = corePoolSize;
- this.maximumPoolSize = maximumPoolSize;
- this.workQueue = workQueue;
- this.keepAliveTime = unit.toNanos(keepAliveTime);
- this.threadFactory = threadFactory;
- this.handler = handler;
- }

这样看来,最后这个线程池就是指的是这个ThreadPoolExecutor类了。再来看看这个类的定义:
public class ThreadPoolExecutor extends AbstractExecutorService
发现他继承自一个抽象的AbstractExecutorService,再来看AbstractExecutorService
public abstract class AbstractExecutorService implements ExecutorService
AbstractExecutorService 是实现了ExecutorService接口。而这个接口正式我们代码里写的那个接口:ExecutorService pool = Executors.newFixedThreadPool(6); 那么这段代码就清晰了:
返回的这个pool 是创建了ExecutorService 的子子类,赋给了这个ExecutorService 接口,通过对ExecutorService 接口的分析,ThreadPoolExecutor就是我们创建的那个线程池了,下面就对该线程池的具体实现做详细分析。
我们还是用上面的ThreadPoolExecutor的重载方法来分析,里面有这么几个参数:
int corePoolSize, 核心线程数量
int maximumPoolSize, 最大线程数量
long keepAliveTime, 核心线程外的那个线程池存活时间
TimeUnit unit, keepAliveTime的时间单位
BlockingQueue<Runnable> workQueue, 线程池中的那个queue
ThreadFactory threadFactory, 线程工厂,用来创建线程池中常驻的worker线程
RejectedExecutionHandler handler 拒绝策略
实际上,从参数中我们可以看出线程池的构成,可以用一张图表示:
下面来看第三点:线程的提交。
再次来看我们提交过程提交了哪些参数:
- public static ExecutorService newFixedThreadPool(int nThreads) {
- return new ThreadPoolExecutor(nThreads=6, nThreads=6,
- 0L, TimeUnit.MILLISECONDS,
- new LinkedBlockingQueue<Runnable>());
- }
第一个参数:核心线程nThreads为6,
第二个参数:最大线程数nThreads为6,
第三个参数:非core线程存活时间为0,
第四个参数时间单位为秒,
第五个参数:线程池的queue为LinkedBlockingQueue的一个线程池,对于LinkedBlockingQueue,这里使用的是默认的构造函数。
- public LinkedBlockingQueue() {
- this(Integer.MAX_VALUE);
- }
传入的是int的最大值,重载方法参数是初始化该queue的最大值:
- public LinkedBlockingQueue(int capacity) {
- if (capacity <= 0) throw new IllegalArgumentException();
- this.capacity = capacity;
- last = head = new Node<E>(null);
- }
所以该queue是个初始化大小是Integer.MAX_VALUE的队列,可以认为是个无界队列。
那么这个fix线程池的构成就变成了这样:
上面new ThreadPoolExecutor构造函数调用的重载方法:
- public ThreadPoolExecutor(int corePoolSize,
- int maximumPoolSize,
- long keepAliveTime,
- TimeUnit unit,
- BlockingQueue<Runnable> workQueue) {
- this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
- Executors.defaultThreadFactory(), defaultHandler);
- }
再贴一次上面的代码:
- public ThreadPoolExecutor(int corePoolSize,
- int maximumPoolSize,
- long keepAliveTime,
- TimeUnit unit,
- BlockingQueue<Runnable> workQueue,
- ThreadFactory threadFactory,
- RejectedExecutionHandler handler) {
- if (corePoolSize < 0 ||
- maximumPoolSize <= 0 ||
- maximumPoolSize < corePoolSize ||
- keepAliveTime < 0)
- throw new IllegalArgumentException();
- if (workQueue == null || threadFactory == null || handler == null)
- throw new NullPointerException();
- this.acc = System.getSecurityManager() == null ?
- null :
- AccessController.getContext();
- this.corePoolSize = corePoolSize;
- this.maximumPoolSize = maximumPoolSize;
- this.workQueue = workQueue;
- this.keepAliveTime = unit.toNanos(keepAliveTime);
- this.threadFactory = threadFactory;
- this.handler = handler;
- }

除了上面分析的五个参数外,这里还多了两个参数,一个是ThreadFactory用的是Executors.defaultThreadFactory(),另一个拒绝策略用的是defaultHandler,拒绝策略的作用是当线程池满了并且queue也满了的时候,再来一个线程提交上来,线程池该怎么处理?这里拒绝策略需要传入一个实现了RejectedExecutionHandler接口的对象 handler,实现该接口需要实现它的rejectedExecution方法,该方法用来实现拒绝策略的具体执行,先来看这个默认拒绝策略:
private static final RejectedExecutionHandler defaultHandler = new AbortPolicy();
他是一个AbortPolicy,从它的rejectedExecution方法可以看出,这个拒绝策略就是直接抛出RejectedExecutionException异常。
- /**
- * A handler for rejected tasks that throws a
- * {@code RejectedExecutionException}.
- */
- public static class AbortPolicy implements RejectedExecutionHandler {
- /**
- * Creates an {@code AbortPolicy}.
- */
- public AbortPolicy() { }
-
- /**
- * Always throws RejectedExecutionException.
- *
- * @param r the runnable task requested to be executed
- * @param e the executor attempting to execute this task
- * @throws RejectedExecutionException always
- */
- public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
- throw new RejectedExecutionException("Task " + r.toString() +
- " rejected from " +
- e.toString());
- }
- }

再来看这个defaultThreadFactory是什么东西:
- static class DefaultThreadFactory implements ThreadFactory {
- private static final AtomicInteger poolNumber = new AtomicInteger(1);
- private final ThreadGroup group;
- private final AtomicInteger threadNumber = new AtomicInteger(1);
- private final String namePrefix;
-
- DefaultThreadFactory() {
- SecurityManager s = System.getSecurityManager();
- group = (s != null) ? s.getThreadGroup() :
- Thread.currentThread().getThreadGroup();
- namePrefix = "pool-" +
- poolNumber.getAndIncrement() +
- "-thread-";
- }
-
- public Thread newThread(Runnable r) {
- Thread t = new Thread(group, r,
- namePrefix + threadNumber.getAndIncrement(),
- 0);
- if (t.isDaemon())
- t.setDaemon(false);
- if (t.getPriority() != Thread.NORM_PRIORITY)
- t.setPriority(Thread.NORM_PRIORITY);
- return t;
- }
- }

上面的构造器要求传入的是ThreadFactory接口的实现类,而该类继承自ThreadFactory,那么显然有用的方法就是这个ThreadFactory中定义的newThread,这是生产一个线程,也就是加入到corepool中的线程都要经过该工厂封装处理一下,具体用法后面会讲到。这样这几个参数都清晰了。那么整个fix线程池的构成是这样:
队列:LinkedBlockQueue,相当于无界队列
核心线程池:6个线程
拒绝策略:AbortPolicy
ThreadFactory:DefaultThreadFactory
最大线程数 = 核心线程数
分析到这里,我们的fix线程池就构建完毕了,这里需要注意的是,当前线程池中并没有具体的线程在执行,只是初始化了一个大小为6的池子。
我们来到第三步,线程的提交:
pool.execute(new Runnable() {...}
点进去发现,execute是executor中定义的接口,而代码
ExecutorService pool = Executors.newFixedThreadPool(6);
中的ExecutorService 是executor的子接口,executor中只定义了execute方法,而这里的pool付给了一个ExecutorService 接口,该接口继承了executor,因此可以使用pool调用execute方法。这里的继承关系如下图:
最终的实现类是ThreadPoolExecutor,来看该类的execute方法:
- public void execute(Runnable command) {
- if (command == null)
- throw new NullPointerException();
- int c = ctl.get();
- if (workerCountOf(c) < corePoolSize) {
- if (addWorker(command, true))
- return;
- c = ctl.get();
- }
- if (isRunning(c) && workQueue.offer(command)) {
- int recheck = ctl.get();
- if (! isRunning(recheck) && remove(command))
- reject(command);
- else if (workerCountOf(recheck) == 0)
- addWorker(null, false);
- }
- else if (!addWorker(command, false))
- reject(command);

这里分为三种情况:
1.当线程池中worker数量没有达到corepoolsize的话,那么将会调用addworker方法把一个worker加入到core线程池里。加入的过程中也会检查worker的数量和线程池的状态。
2.当corepool中的线程数量达到了corepoolsize,那么会将提交上来的command(Runnable)放入到队列里。在放入过程中,也会去检查线程池的状态等。
3.如果放入队列失败,如果此时还有最大线程池的设置,并且最大线程池数量大于corepoolsize的话,那么就会启动新的线程,否则,执行拒绝策略。
首先,看int c = ctl.get();这里的ctl:
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
一个atomic类型的变量,该变量身兼两职:与ReentrantReadWriteLock类似,利用变量的不同位记录了线程池的状态和线程数量。比如runState通过对该变量位运算拿到线程池状态,workerCountOf利用位运算拿到线程数量:
- private static int runStateOf(int c) { return c & ~CAPACITY; }
- private static int workerCountOf(int c) { return c & CAPACITY; }
- private static int ctlOf(int rs, int wc) { return rs | wc; }
它的低29位用于存放当前的线程数, 因此一个线程池在理论上最大的线程数是 536870911; 高 3 位是用于表示当前线程池的状态, 其中高三位的值和状态对应如下:
总之这个变量是用来记录线程池状态和当前线程数量的。
- //如果当前线程池的数量小于corepoolsize的数量,就去执行addWorker(command, true)
- if (workerCountOf(c) < corePoolSize) {
- if (addWorker(command, true))
- return;
- c = ctl.get();
- }
进入addworker方法,传入的参数分别是需要执行的提交的线程,和一个bool变量,该变量来标识该线程是否是提交到core线程池内。
- private boolean addWorker(Runnable firstTask, boolean core) {
- //标识,方便程序跳转
- retry:
- for (;;) {
- //获取当前的ctl值
- int c = ctl.get();
- //通过ctl获取当前线程池状态
- int rs = runStateOf(c);
-
- // Check if queue empty only if necessary.
- if (rs >= SHUTDOWN &&
- ! (rs == SHUTDOWN &&
- firstTask == null &&
- ! workQueue.isEmpty()))
- return false;
-
- for (;;) {
- //获取当前线程池线程数量
- int wc = workerCountOf(c);
- //这里core为true,也就是说,如果当前正在执行的线程数量大于等于CAPACITY
- //或者大于等于corepoolsize,就直接返回false
- if (wc >= CAPACITY ||
- wc >= (core ? corePoolSize : maximumPoolSize))
- return false;
- //否则的话,进入这里意味着corepool还没有满
- //cas操作对当前线程数的记录进行原子加操作
- //如果cas成功,就跳出当前两层循环向下执行
- if (compareAndIncrementWorkerCount(c))
- break retry;
- //运行到这里意味着上面对workercount的cas加操作失败
- //重新上面的操作,直到cas成功跳出循环或者线程池满导致条件判断失败返回false
- c = ctl.get(); // Re-read ctl
- if (runStateOf(c) != rs)
- continue retry;
- // else CAS failed due to workerCount change; retry inner loop
- }
- }
- //设置状态标志worker线程
- boolean workerStarted = false;
- boolean workerAdded = false;
- Worker w = null;
- try {
- //firstTask是传进来的线程,Worker的构造看下面的源码
- w = new Worker(firstTask);
- //t这个threa就是worker中通过线程工厂创建的线程
- final Thread t = w.thread;
- if (t != null) {
- //加锁
- final ReentrantLock mainLock = this.mainLock;
- mainLock.lock();
- try {
- // Recheck while holding lock.
- // Back out on ThreadFactory failure or if
- // shut down before lock acquired.
- //再次检查线程池运行状态
- int rs = runStateOf(ctl.get());
- //小于shutdown意味着running状态
- if (rs < SHUTDOWN ||
- (rs == SHUTDOWN && firstTask == null)) {
- //检查一下,t是新加入的线程,正常情况下不应该已经启动
- if (t.isAlive()) // precheck that t is startable
- throw new IllegalThreadStateException();
- //worker是个HashSet 就是core线程池,加入新建的worker
- workers.add(w);
- int s = workers.size();
- if (s > largestPoolSize)
- largestPoolSize = s;
- //加入成功设置状态
- workerAdded = true;
- }
- } finally {
- mainLock.unlock();
- }
- if (workerAdded) {
- //wroker加入到线程池后,将worker内的那个thread启动。并修改状态
- //该threa的启动并是执行的worker中的run方法
- t.start();
- workerStarted = true;
- }
- }
- } finally {
- if (! workerStarted)
- //如果worker启动失败,则要做处理
- addWorkerFailed(w);
- }
- //最后返回线程是否启动成功
- return workerStarted;
- }

其中worker线程的构造过程:
- Worker(Runnable firstTask) {
- setState(-1); // inhibit interrupts until runWorker
- this.firstTask = firstTask;
- this.thread = getThreadFactory().newThread(this);
- }
将提交上来的thread:firstTask赋值给Worker的成员变量,并将自己传递给线程工厂来创建出一个新的线程,这里有点绕,实际上是Worker本身就是一个Runnable类,它持有两个线程,一个是提交上来的线程firstTask,一个是将本身传递给线程工厂产生的一个线程thread:
- /** Thread this worker is running in. Null if factory fails. */
- final Thread thread;
- /** Initial task to run. Possibly null. */
- Runnable firstTask;
线程工厂主要做了一些封装,给线程设置个名字,优先级等。
- public Thread newThread(Runnable r) {
- Thread t = new Thread(group, r,
- namePrefix + threadNumber.getAndIncrement(),
- 0);
- if (t.isDaemon())
- t.setDaemon(false);
- if (t.getPriority() != Thread.NORM_PRIORITY)
- t.setPriority(Thread.NORM_PRIORITY);
- return t;
- }
下面来看,如果线程启动失败了怎么办,也就是代码中的addWorkerFailed(w);方法:
- private void addWorkerFailed(Worker w) {
- final ReentrantLock mainLock = this.mainLock;
- mainLock.lock();
- try {
- if (w != null)
- workers.remove(w);
- decrementWorkerCount();
- tryTerminate();
- } finally {
- mainLock.unlock();
- }
- }
该方法首先获取锁,因为workers是非线程安全的类,所以前面的addworker和这里的remove操作都需要枷锁。这里首先从worker中删除刚加入的worker线程,然后将worker计数器减一,并调用tryTerminate方法,最后释放锁。最后tryTerminate方法去关掉线程。
在上面worker的执行t.start();这段代码调用的是worker的run方法:
- public void run() {
- runWorker(this);
- }
runWorker方法:
- final void runWorker(Worker w) {
- Thread wt = Thread.currentThread();
- Runnable task = w.firstTask;
- w.firstTask = null;
- w.unlock(); // allow interrupts
- boolean completedAbruptly = true;
- try {
- //第一轮循环task!=null,进入循环,执行提交上来的任务
- //第二轮循环,task=null,getTask()从队列中获取任务,如果队列是空
- //则调用getTask方法从队列中获取任务
- while (task != null || (task = getTask()) != null) {
- w.lock();
- // If pool is stopping, ensure thread is interrupted;
- // if not, ensure thread is not interrupted. This
- // requires a recheck in second case to deal with
- // shutdownNow race while clearing interrupt
- if ((runStateAtLeast(ctl.get(), STOP) ||
- (Thread.interrupted() &&
- runStateAtLeast(ctl.get(), STOP))) &&
- !wt.isInterrupted())
- wt.interrupt();
- try {
- beforeExecute(wt, task);
- Throwable thrown = null;
- try {
- task.run();
- } catch (RuntimeException x) {
- thrown = x; throw x;
- } catch (Error x) {
- thrown = x; throw x;
- } catch (Throwable x) {
- thrown = x; throw new Error(x);
- } finally {
- afterExecute(task, thrown);
- }
- } finally {
- task = null;
- w.completedTasks++;
- w.unlock();
- }
- }
- completedAbruptly = false;
- } finally {
- processWorkerExit(w, completedAbruptly);
- }
- }

做了一些状态的变更,最终调用的还是提交上来的那个线程的run方法。这里还有个比较重要的方法就是在循环中的getTask()方法:
while (task != null || (task = getTask()) != null) {... ...}
getTask方法就是不断的从队列中获取任务交给runWorker里的循环来启动:
- private Runnable getTask() {
- boolean timedOut = false; // Did the last poll() time out?
-
- for (;;) {
- int c = ctl.get();
- int rs = runStateOf(c);
-
- // Check if queue empty only if necessary.
- if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
- decrementWorkerCount();
- return null;
- }
-
- int wc = workerCountOf(c);
-
- // Are workers subject to culling?
- boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
-
- if ((wc > maximumPoolSize || (timed && timedOut))
- && (wc > 1 || workQueue.isEmpty())) {
- if (compareAndDecrementWorkerCount(c))
- return null;
- continue;
- }
-
- try {
- Runnable r = timed ?
- workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
- //fix pool走这里,如果队列中没有任务则阻塞等待
- workQueue.take();
- if (r != null)
- return r;
- timedOut = true;
- } catch (InterruptedException retry) {
- timedOut = false;
- }
- }
- }

因为fix线程池中没有超时的设置,所有如果队列中没有任务需要执行了,则take方法阻塞住:
- public E take() throws InterruptedException {
- E x;
- int c = -1;
- final AtomicInteger count = this.count;
- final ReentrantLock takeLock = this.takeLock;
- takeLock.lockInterruptibly();
- try {
- while (count.get() == 0) {
- //阻塞在这里
- notEmpty.await();
- }
- x = dequeue();
- c = count.getAndDecrement();
- if (c > 1)
- notEmpty.signal();
- } finally {
- takeLock.unlock();
- }
- if (c == capacity)
- signalNotFull();
- return x;
- }

也就是阻塞队列里获取数据的时候,阻塞在notEmpty.await();方法。而后面的offer(command)向队列中添加任务的时候又会调用signalNotEmpty();来唤醒被阻塞的worker线程中的take方法,这样worker线程获取了新的任务继续在线程池里执行了。
那么第一种情况:当线程池中worker数量没有达到corepoolsize的话已经分析完了。
下面分析第二种情况:当corepool中的线程数量达到了corepoolsize,那么会将提交上来的command(Runnable)放入到队列里。再贴一次上面的源码:
- public void execute(Runnable command) {
- if (command == null)
- throw new NullPointerException();
- int c = ctl.get();
- //第一种情况
- //如果工作线程数小于核心线程数,
- if (workerCountOf(c) < corePoolSize) {
- if (addWorker(command, true))
- return;
- c = ctl.get();
- }
- //第二种情况
- //如果工作线程数大于核心线程数,则检查线程池状态是否是正在运行,
- //且将新线程向阻塞队列提交。
- if (isRunning(c) && workQueue.offer(command)) {
- int recheck = ctl.get();
- //如果线程池不在存活状态,那么从队列里把任务移除,并执行reject策略
- if (! isRunning(recheck) && remove(command))
- reject(command);
- //如果线程池的工作线程为零,则调用addWoker提交任务
- //如果走到这里,说明上步的remove方法失败了,任务已经提交到queue里了
- //所以这里addWorker传入null,然后从队列里拿就行了,否则任务就重复
- //提交了
- else if (workerCountOf(recheck) == 0)
- addWorker(null, false);
- }
- //第三种情况
- else if (!addWorker(command, false))
- reject(command);

这种情况下,只要线程池存活,就会尝试将这个任务放到workQueue中,通过前面的分析指导该queue是个LinkedBlockingQueue,来看它的offer方法:
- public boolean offer(E e) {
- if (e == null) throw new NullPointerException();
- final AtomicInteger count = this.count;
- if (count.get() == capacity)
- return false;
- int c = -1;
- Node<E> node = new Node<E>(e);
- //加锁
- final ReentrantLock putLock = this.putLock;
- putLock.lock();
- try {
- if (count.get() < capacity) {
- enqueue(node);
- c = count.getAndIncrement();
- if (c + 1 < capacity)
- //队列没有满,通知添加被阻塞的线程继续加入元素
- notFull.signal();
- }
- } finally {
- putLock.unlock();
- }
- //队列里没有任务了,那么所有的core线程池中的worker都被take阻塞住了
- if (c == 0)
- //通知所有等待的worker,队列有数据了,worker中的阻塞take方法被唤醒执行
- signalNotEmpty();
- return c >= 0;
- }

加入队列后,再次去判断线程池状态,如果是不再运行,那么再从队列中把任务删除掉并执行reject策略。如果remove失败,则提交一个空任务的worker到core线程池,消费这个queue里的任务就行了。
第三种情况比较简单了,如果corepoll满了,并且队列也满了,那么就会创建额外的线程池
- else if (!addWorker(command, false))
- reject(command);
在addworker中
- if (wc >= CAPACITY ||
- wc >= (core ? corePoolSize : maximumPoolSize))
- return false;
如果当前线程数量已经大于maximumPoolSize了,就执行拒绝策略。
实际上,在fix线程池中是不会走到第三种情况的,因为只有在队列满了的情况下才会出现第三者情况,但是这个队列是int型的最大值,在到第三种情况之前早就内存溢出了。
最后看下线程池关闭的方法shutdown:
- /**
- * Initiates an orderly shutdown in which previously submitted
- * tasks are executed, but no new tasks will be accepted.
- * Invocation has no additional effect if already shut down.
- *
- * <p>This method does not wait for previously submitted tasks to
- * complete execution. Use {@link #awaitTermination awaitTermination}
- * to do that.
- *
- * @throws SecurityException {@inheritDoc}
- */
- public void shutdown() {
- final ReentrantLock mainLock = this.mainLock;
- mainLock.lock();
- try {
- checkShutdownAccess();
- advanceRunState(SHUTDOWN);
- interruptIdleWorkers();
- onShutdown(); // hook for ScheduledThreadPoolExecutor
- } finally {
- mainLock.unlock();
- }
- tryTerminate();
- }

这个方法大意就是不再接受新的任务提交,但是会等待所有的已经提交的任务全部执行完才去关闭线程池。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。