当前位置:   article > 正文

深度学习环境配置:(windows环境)WSL2-Ubuntu+(mac环境)_windows wsl ubuntu

windows wsl ubuntu

Windows

1.在Windows的WSL2上安装Ubuntu

流程可参考:https://www.bilibili.com/video/BV1mX4y177dJ

注意:中间可能需要使用命令wsl --update更新一下wsl

2.WSL数据迁移

按照下面流程:开始菜单->设置->应用->安装的应用->搜索“ubuntu”->点选3个点->移动->移动到"非C盘的其他盘"

3.为WSL适配图形化界面

参考:https://www.bilibili.com/video/BV1mX4y177dJ
启动图形化界面的命令是sudo startxfce4

4.安装cuda

参考:https://zhuanlan.zhihu.com/p/683058297

nvidia-smi命令的解释参考:https://blog.csdn.net/daydayup858/article/details/131633445

注意:一定要先查看nvidia-smi命令中的显示的支持的cuda的最高版本,然后再去下载对应版本的cuda。

如果装错了cuda版本,可以参考这篇文章卸载已安装的cuda:https://blog.csdn.net/ziqibit/article/details/129935737

如果显示nvcc not found,请参考:https://blog.csdn.net/Maggie_JK/article/details/132666245

5.安装cuDNN

参考:https://zhuanlan.zhihu.com/p/683058297

卸载cuDNN的方式是和卸载cuda类似的。

完成安装后可以使用参考链接的内容进行验证,cuDNN是否正确安装。

7.安装miniconda

参考:https://zhuanlan.zhihu.com/p/683058297

安装完conda之后,创建新的环境,并切换到新环境

8.安装pytorch

参考:https://zhuanlan.zhihu.com/p/683058297

9.安装vscode

去vscode官网安装vscode
vscode上安装wsl扩展包
之后参考https://zhuanlan.zhihu.com/p/683058297
https://learn.microsoft.com/zh-cn/windows/wsl/tutorials/wsl-vscode

9.代码测试

参考:https://www.bilibili.com/video/BV1B14y1W7z3

我的测试结果:
在这里插入图片描述
在这里插入图片描述

在Mac上只使用CPU

在这里插入图片描述

在Mac上使用GPU

在这里插入图片描述

10.其他

如何优雅的使用WSL:https://www.bilibili.com/video/BV1Ku4y1f7nq

Mac

Mac上安装anaconda3,pytorch,vscode

参考资料:https://www.bilibili.com/video/BV1gk4y1M76B

Mac上配置vscode和pycharm

参考视频:https://www.bilibili.com/video/BV1j14y1o7k7
在这里插入图片描述

如何修改python console对应的python默认环境。
一般默认环境是/usr/bin/python3
要修改默认环境,就需要修改这个project的环境
可以通过setting进入修改
在这里插入图片描述

如何继续修改pycharm中的python console的默认环境。
参考:PyCharm中如何设置切换Python Console终端的Python版本
在这里插入图片描述

“本地跑神经网络实验”以及“远程连接服务器”

参考资料:https://www.bilibili.com/video/BV1t14y1o7vb

本地跑神经网络实验

from __future__ import print_function
import argparse
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = nn.Conv2d(32, 64, 3, 1)
        self.dropout1 = nn.Dropout(0.25)
        self.dropout2 = nn.Dropout(0.5)
        self.fc1 = nn.Linear(9216, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, 2)
        x = self.dropout1(x)
        x = torch.flatten(x, 1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout2(x)
        x = self.fc2(x)
        output = F.log_softmax(x, dim=1)
        return output


def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
            if args.dry_run:
                break


def test(model, device, test_loader):
    model.eval()
    for batch_idx, (data, target) in enumerate(test_loader):
        data, target = data.to(device), target.to(device)
        output = model(data)
        loss = F.nll_loss(output, target)
        print('Test:  [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
            batch_idx * len(data), len(test_loader.dataset),
            0.1 * batch_idx * len(data) / len(test_loader), loss.item()))


def main():
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                        help='input batch size for testing (default: 1000)')
    parser.add_argument('--epochs', type=int, default=1, metavar='N',
                        help='number of epochs to train (default: 14)')
    parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
                        help='learning rate (default: 1.0)')
    parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
                        help='Learning rate step gamma (default: 0.7)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--use_gpu', action='store_true', default=False,
                        help='enable MPS')
    parser.add_argument('--dry-run', action='store_true', default=False,
                        help='quickly check a single pass')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')
    parser.add_argument('--save-model', action='store_true', default=False,
                        help='For Saving the current Model')
    args = parser.parse_args()
    use_gpu = args.use_gpu

    torch.manual_seed(args.seed)

    device = torch.device("mps" if args.use_gpu else "cpu")

    train_kwargs = {'batch_size': args.batch_size}
    test_kwargs = {'batch_size': args.test_batch_size}
    if use_gpu:
        cuda_kwargs = {'num_workers': 1,
                       'pin_memory': True,
                       'shuffle': True}
        train_kwargs.update(cuda_kwargs)
        test_kwargs.update(cuda_kwargs)

    transform=transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
        ])
    dataset1 = datasets.MNIST('./data', train=True, download=True,
                       transform=transform)
    dataset2 = datasets.MNIST('./data', train=False,
                       transform=transform)
    train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs)
    test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)


    model = Net().to(device)
    optimizer = optim.Adadelta(model.parameters(), lr=args.lr)

    scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
    for epoch in range(1, args.epochs + 1):
        train(args, model, device, train_loader, optimizer, epoch)
        test(model, device, test_loader)
        scheduler.step()


if __name__ == '__main__':
    t0 = time.time()
    main()
    t1 = time.time()
    print('time_cost:', t1 - t0)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133

远程连接服务器

下载royal tsx

类似windows上的xshell和fstp
官网:https://royalapps.com/ts/mac/features

  • file->new document
  • 安装terminal和file transfer插件
  • ssh连接
  • 优点:可以浏览远程文件路径
  • 缺点:无法做到本地与远程的代码同步,无法远程debug
在vscode上远程
  • 配置ssh和sftp:详见视频
  • 设置远程解释器
  • 优点:能做到代码同步,还能远程debug
  • 缺点:设置麻烦,无法浏览远程文件
Tmux工具
  • Tmux可以防止实验中断

基本命令

# 创建tmux会话
tmux new -s test
# 退出会话
tmux detach
# 进入会话
tmux at -t name # at实际上是attach的简写
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

一定要进tmux会话里面再运行实验代码

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/煮酒与君饮/article/detail/992731
推荐阅读
相关标签
  

闽ICP备14008679号