赞
踩
目录
pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为语音(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks)。共计覆盖32万个模型
本文对pipeline进行整体介绍,之后本专栏以每个task为主题,分别介绍各种task使用方法。
管道是一种使用模型进行推理的简单而好用的方法。这些管道是从库中抽象出大部分复杂代码的对象,提供了专用于多项任务的简单 API,包括命名实体识别、掩码语言建模、情感分析、特征提取和问答
。在使用上,主要有2种方法
- 使用task实例化pipeline对象
- 使用model实例化pipeline对象
自动语音识别的task为automatic-speech-recognition:
- import os
- os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
- os.environ["CUDA_VISIBLE_DEVICES"] = "2"
-
- from transformers import pipeline
-
- speech_file = "./output_video_enhanced.mp3"
- pipe = pipeline(task="automatic-speech-recognition")
- result = pipe(speech_file)
- print(result)
task共计28类,按首字母排序,列表如下,直接替换2.2.1代码中的pipeline的task即可应用:
"audio-classification"
:将返回一个AudioClassificationPipeline。"automatic-speech-recognition"
:将返回一个AutomaticSpeechRecognitionPipeline。"depth-estimation"
:将返回一个DepthEstimationPipeline。"document-question-answering"
:将返回一个DocumentQuestionAnsweringPipeline。"feature-extraction"
:将返回一个FeatureExtractionPipeline。"fill-mask"
:将返回一个FillMaskPipeline:。"image-classification"
:将返回一个ImageClassificationPipeline。"image-feature-extraction"
:将返回一个ImageFeatureExtractionPipeline。"image-segmentation"
:将返回一个ImageSegmentationPipeline。"image-to-image"
:将返回一个ImageToImagePipeline。"image-to-text"
:将返回一个ImageToTextPipeline。"mask-generation"
:将返回一个MaskGenerationPipeline。"object-detection"
:将返回一个ObjectDetectionPipeline。"question-answering"
:将返回一个QuestionAnsweringPipeline。"summarization"
:将返回一个SummarizationPipeline。"table-question-answering"
:将返回一个TableQuestionAnsweringPipeline。"text2text-generation"
:将返回一个Text2TextGenerationPipeline。"text-classification"
("sentiment-analysis"
可用别名):将返回一个 TextClassificationPipeline。"text-generation"
:将返回一个TextGenerationPipeline:。"text-to-audio"
("text-to-speech"
可用别名):将返回一个TextToAudioPipeline:。"token-classification"
("ner"
可用别名):将返回一个TokenClassificationPipeline。"translation"
:将返回一个TranslationPipeline。"translation_xx_to_yy"
:将返回一个TranslationPipeline。"video-classification"
:将返回一个VideoClassificationPipeline。"visual-question-answering"
:将返回一个VisualQuestionAnsweringPipeline。"zero-shot-classification"
:将返回一个ZeroShotClassificationPipeline。"zero-shot-image-classification"
:将返回一个ZeroShotImageClassificationPipeline。"zero-shot-audio-classification"
:将返回一个ZeroShotAudioClassificationPipeline。"zero-shot-object-detection"
:将返回一个ZeroShotObjectDetectionPipeline。
针对每一个task,pipeline默认配置了模型,可以通过pipeline源代码查看:
- SUPPORTED_TASKS = {
- "audio-classification": {
- "impl": AudioClassificationPipeline,
- "tf": (),
- "pt": (AutoModelForAudioClassification,) if is_torch_available() else (),
- "default": {"model": {"pt": ("superb/wav2vec2-base-superb-ks", "372e048")}},
- "type": "audio",
- },
- "automatic-speech-recognition": {
- "impl": AutomaticSpeechRecognitionPipeline,
- "tf": (),
- "pt": (AutoModelForCTC, AutoModelForSpeechSeq2Seq) if is_torch_available() else (),
- "default": {"model": {"pt": ("facebook/wav2vec2-base-960h", "55bb623")}},
- "type": "multimodal",
- },
- "text-to-audio": {
- "impl": TextToAudioPipeline,
- "tf": (),
- "pt": (AutoModelForTextToWaveform, AutoModelForTextToSpectrogram) if is_torch_available() else (),
- "default": {"model": {"pt": ("suno/bark-small", "645cfba")}},
- "type": "text",
- },
- "feature-extraction": {
- "impl": FeatureExtractionPipeline,
- "tf": (TFAutoModel,) if is_tf_available() else (),
- "pt": (AutoModel,) if is_torch_available() else (),
- "default": {
- "model": {
- "pt": ("distilbert/distilbert-base-cased", "935ac13"),
- "tf": ("distilbert/distilbert-base-cased", "935ac13"),
- }
- },
- "type": "multimodal",
- },
- "text-classification": {
- "impl": TextClassificationPipeline,
- "tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
- "pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
- "default": {
- "model": {
- "pt": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
- "tf": ("distilbert/distilbert-base-uncased-finetuned-sst-2-english", "af0f99b"),
- },
- },
- "type": "text",
- },
- "token-classification": {
- "impl": TokenClassificationPipeline,
- "tf": (TFAutoModelForTokenClassification,) if is_tf_available() else (),
- "pt": (AutoModelForTokenClassification,) if is_torch_available() else (),
- "default": {
- "model": {
- "pt": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
- "tf": ("dbmdz/bert-large-cased-finetuned-conll03-english", "f2482bf"),
- },
- },
- "type": "text",
- },
- "question-answering": {
- "impl": QuestionAnsweringPipeline,
- "tf": (TFAutoModelForQuestionAnswering,) if is_tf_available() else (),
- "pt": (AutoModelForQuestionAnswering,) if is_torch_available() else (),
- "default": {
- "model": {
- "pt": ("distilbert/distilbert-base-cased-distilled-squad", "626af31"),
- "tf": ("distilbert/distilbert-base-cased-distilled-squad", "626af31"),
- },
- },
- "type": "text",
- },
- "table-question-answering": {
- "impl": TableQuestionAnsweringPipeline,
- "pt": (AutoModelForTableQuestionAnswering,) if is_torch_available() else (),
- "tf": (TFAutoModelForTableQuestionAnswering,) if is_tf_available() else (),
- "default": {
- "model": {
- "pt": ("google/tapas-base-finetuned-wtq", "69ceee2"),
- "tf": ("google/tapas-base-finetuned-wtq", "69ceee2"),
- },
- },
- "type": "text",
- },
- "visual-question-answering": {
- "impl": VisualQuestionAnsweringPipeline,
- "pt": (AutoModelForVisualQuestionAnswering,) if is_torch_available() else (),
- "tf": (),
- "default": {
- "model": {"pt": ("dandelin/vilt-b32-finetuned-vqa", "4355f59")},
- },
- "type": "multimodal",
- },
- "document-question-answering": {
- "impl": DocumentQuestionAnsweringPipeline,
- "pt": (AutoModelForDocumentQuestionAnswering,) if is_torch_available() else (),
- "tf": (),
- "default": {
- "model": {"pt": ("impira/layoutlm-document-qa", "52e01b3")},
- },
- "type": "multimodal",
- },
- "fill-mask": {
- "impl": FillMaskPipeline,
- "tf": (TFAutoModelForMaskedLM,) if is_tf_available() else (),
- "pt": (AutoModelForMaskedLM,) if is_torch_available() else (),
- "default": {
- "model": {
- "pt": ("distilbert/distilroberta-base", "ec58a5b"),
- "tf": ("distilbert/distilroberta-base", "ec58a5b"),
- }
- },
- "type": "text",
- },
- "summarization": {
- "impl": SummarizationPipeline,
- "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
- "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
- "default": {
- "model": {"pt": ("sshleifer/distilbart-cnn-12-6", "a4f8f3e"), "tf": ("google-t5/t5-small", "d769bba")}
- },
- "type": "text",
- },
- # This task is a special case as it's parametrized by SRC, TGT languages.
- "translation": {
- "impl": TranslationPipeline,
- "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
- "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
- "default": {
- ("en", "fr"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
- ("en", "de"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
- ("en", "ro"): {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
- },
- "type": "text",
- },
- "text2text-generation": {
- "impl": Text2TextGenerationPipeline,
- "tf": (TFAutoModelForSeq2SeqLM,) if is_tf_available() else (),
- "pt": (AutoModelForSeq2SeqLM,) if is_torch_available() else (),
- "default": {"model": {"pt": ("google-t5/t5-base", "686f1db"), "tf": ("google-t5/t5-base", "686f1db")}},
- "type": "text",
- },
- "text-generation": {
- "impl": TextGenerationPipeline,
- "tf": (TFAutoModelForCausalLM,) if is_tf_available() else (),
- "pt": (AutoModelForCausalLM,) if is_torch_available() else (),
- "default": {"model": {"pt": ("openai-community/gpt2", "6c0e608"), "tf": ("openai-community/gpt2", "6c0e608")}},
- "type": "text",
- },
- "zero-shot-classification": {
- "impl": ZeroShotClassificationPipeline,
- "tf": (TFAutoModelForSequenceClassification,) if is_tf_available() else (),
- "pt": (AutoModelForSequenceClassification,) if is_torch_available() else (),
- "default": {
- "model": {
- "pt": ("facebook/bart-large-mnli", "c626438"),
- "tf": ("FacebookAI/roberta-large-mnli", "130fb28"),
- },
- "config": {
- "pt": ("facebook/bart-large-mnli", "c626438"),
- "tf": ("FacebookAI/roberta-large-mnli", "130fb28"),
- },
- },
- "type": "text",
- },
- "zero-shot-image-classification": {
- "impl": ZeroShotImageClassificationPipeline,
- "tf": (TFAutoModelForZeroShotImageClassification,) if is_tf_available() else (),
- "pt": (AutoModelForZeroShotImageClassification,) if is_torch_available() else (),
- "default": {
- "model": {
- "pt": ("openai/clip-vit-base-patch32", "f4881ba"),
- "tf": ("openai/clip-vit-base-patch32", "f4881ba"),
- }
- },
- "type": "multimodal",
- },
- "zero-shot-audio-classification": {
- "impl": ZeroShotAudioClassificationPipeline,
- "tf": (),
- "pt": (AutoModel,) if is_torch_available() else (),
- "default": {
- "model": {
- "pt": ("laion/clap-htsat-fused", "973b6e5"),
- }
- },
- "type": "multimodal",
- },
- "image-classification": {
- "impl": ImageClassificationPipeline,
- "tf": (TFAutoModelForImageClassification,) if is_tf_available() else (),
- "pt": (AutoModelForImageClassification,) if is_torch_available() else (),
- "default": {
- "model": {
- "pt": ("google/vit-base-patch16-224", "5dca96d"),
- "tf": ("google/vit-base-patch16-224", "5dca96d"),
- }
- },
- "type": "image",
- },
- "image-feature-extraction": {
- "impl": ImageFeatureExtractionPipeline,
- "tf": (TFAutoModel,) if is_tf_available() else (),
- "pt": (AutoModel,) if is_torch_available() else (),
- "default": {
- "model": {
- "pt": ("google/vit-base-patch16-224", "3f49326"),
- "tf": ("google/vit-base-patch16-224", "3f49326"),
- }
- },
- "type": "image",
- },
- "image-segmentation": {
- "impl": ImageSegmentationPipeline,
- "tf": (),
- "pt": (AutoModelForImageSegmentation, AutoModelForSemanticSegmentation) if is_torch_available() else (),
- "default": {"model": {"pt": ("facebook/detr-resnet-50-panoptic", "fc15262")}},
- "type": "multimodal",
- },
- "image-to-text": {
- "impl": ImageToTextPipeline,
- "tf": (TFAutoModelForVision2Seq,) if is_tf_available() else (),
- "pt": (AutoModelForVision2Seq,) if is_torch_available() else (),
- "default": {
- "model": {
- "pt": ("ydshieh/vit-gpt2-coco-en", "65636df"),
- "tf": ("ydshieh/vit-gpt2-coco-en", "65636df"),
- }
- },
- "type": "multimodal",
- },
- "object-detection": {
- "impl": ObjectDetectionPipeline,
- "tf": (),
- "pt": (AutoModelForObjectDetection,) if is_torch_available() else (),
- "default": {"model": {"pt": ("facebook/detr-resnet-50", "2729413")}},
- "type": "multimodal",
- },
- "zero-shot-object-detection": {
- "impl": ZeroShotObjectDetectionPipeline,
- "tf": (),
- "pt": (AutoModelForZeroShotObjectDetection,) if is_torch_available() else (),
- "default": {"model": {"pt": ("google/owlvit-base-patch32", "17740e1")}},
- "type": "multimodal",
- },
- "depth-estimation": {
- "impl": DepthEstimationPipeline,
- "tf": (),
- "pt": (AutoModelForDepthEstimation,) if is_torch_available() else (),
- "default": {"model": {"pt": ("Intel/dpt-large", "e93beec")}},
- "type": "image",
- },
- "video-classification": {
- "impl": VideoClassificationPipeline,
- "tf": (),
- "pt": (AutoModelForVideoClassification,) if is_torch_available() else (),
- "default": {"model": {"pt": ("MCG-NJU/videomae-base-finetuned-kinetics", "4800870")}},
- "type": "video",
- },
- "mask-generation": {
- "impl": MaskGenerationPipeline,
- "tf": (),
- "pt": (AutoModelForMaskGeneration,) if is_torch_available() else (),
- "default": {"model": {"pt": ("facebook/sam-vit-huge", "997b15")}},
- "type": "multimodal",
- },
- "image-to-image": {
- "impl": ImageToImagePipeline,
- "tf": (),
- "pt": (AutoModelForImageToImage,) if is_torch_available() else (),
- "default": {"model": {"pt": ("caidas/swin2SR-classical-sr-x2-64", "4aaedcb")}},
- "type": "image",
- },
- }

如果不想使用task中默认的模型,可以指定huggingface中的模型:
- import os
- os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
- os.environ["CUDA_VISIBLE_DEVICES"] = "2"
-
- from transformers import pipeline
-
- speech_file = "./output_video_enhanced.mp3"
- #transcriber = pipeline(task="automatic-speech-recognition", model="openai/whisper-medium")
- pipe = pipeline(model="openai/whisper-medium")
- result = pipe(speech_file)
- print(result)
可以登录https://huggingface.co/tasks查看
本文为transformers之pipeline专栏的第0篇,后面会以每个task为一篇,共计讲述28+个tasks的用法,通过28个tasks的pipeline使用学习,可以掌握语音、计算机视觉、自然语言处理、多模态乃至强化学习等30w+个huggingface上的开源大模型。让你成为大模型领域的专家!
期待您的3连+关注,如何还有时间,欢迎阅读我的其他文章:
《AI—工程篇》
AI智能体研发之路-工程篇(一):Docker助力AI智能体开发提效
AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署
AI智能体研发之路-工程篇(三):大模型推理服务框架Ollama一键部署
AI智能体研发之路-工程篇(四):大模型推理服务框架Xinference一键部署
AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署
《AI—模型篇》
AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用
AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战
AI智能体研发之路-模型篇(四):一文入门pytorch开发
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
AI智能体研发之路-模型篇(六):【机器学习】基于tensorflow实现你的第一个DNN网络
AI智能体研发之路-模型篇(七):【机器学习】基于YOLOv10实现你的第一个视觉AI大模型
AI智能体研发之路-模型篇(八):【机器学习】Qwen1.5-14B-Chat大模型训练与推理实战
AI智能体研发之路-模型篇(九):【机器学习】GLM4-9B-Chat大模型/GLM-4V-9B多模态大模型概述、原理及推理实战
《AI—Transformers应用》
【AI大模型】Transformers大模型库(一):Tokenizer
【AI大模型】Transformers大模型库(二):AutoModelForCausalLM
【AI大模型】Transformers大模型库(三):特殊标记(special tokens)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。