赞
踩
了解ELK
ELK是Elasticsearch、Logstash、Kibana三大开源框架首字母大写简称。市面上也被成为Elastic Stack。其中Elasticsearch是一个基于Lucene、分布式、通过Restful方式进行交互的近实时搜索平台框架。像类似百度、谷歌这种大数据全文搜索引擎的场景都可以使用Elasticsearch作为底层支持框架,可见Elasticsearch提供的搜索能力确实强大,市面上很多时候我们简称Elasticsearch为es.Logstash是ELK的中央数据流引擎,用于从不同目标(文俐数据存储/MQ)收集的不同格式数据,经过过滤后支持输出到不同目的地(文件/MQ/redis/elasticsearch/kafka等)。Kibana可以将elasticsearch的数据通过友好的页面展示出来,提供实时分析的功能。
市面上很多开发只要提到ELK能够一致说出它是一个日志分析架构技术栈总称,但实际上ELK不仅仅适用于日志分析,它还可以支持其它任何数据分析和收集的场景,日志分析和收集只是更具有代表性。并非唯一性。
Kibana
Kibana是一个针对Elasticsearch的开源分析及可视化平台,用来搜索、查看交互存诸在Elasticsearch索引中的数据。使用Kibana ,可以通过各种图表进行高级数据分析及展示。Kibana让海量数据更容易理解。它操作简单,基于浏览器的用户界面可以快速创建仪表板( dashboard )实时显示Elasticsearch查询动态。设置Kibana非常简单。无需编码或者额外的基础架构,几分钟内就可以完成Kibana安装并启动Elasticsearch索引监测。
官网: https://www.elastic.co/cn/kibana
kibana版本要和ES版本一致
什么是IK分词器?
分词:即把一段中文或者别的划分成一个个的关键字,我们在搜索时候会把自己的信息进行分词,会把数据库中或者索引库中的数据进行分词,然后进行一个匹配操作,默认的中文分词是将每个字看成一个词,比如“我爱狂神”会被分为"我"“爱"狂”“神””,这显然是不符合要求的,所以我们需要安装中文分词器ik来解决这个问题。
IK提供了两个分词算法: ik_smart和ik_max_word,其中
我们输入 超级喜欢狂神说Java
发现问题: 狂神说被拆开了
这种自己需要的词,需要自己加入到我们的分词器的字典中
ik 分词器增加自己的配置
以后我们需要自己配置分词 就在自己定义的dic文件中进行配置即可!
概述
在前面的学习中,我们已经掌握了es是什么,同时也把es的服务安装启动,那么es是如何去存储数据,数据结构是什么,又是如何实现搜索的呢?我们先来聊聊ElasticSearch的相关概念
集群,节点,索引,文档,分片,映射是什么?
elasticsearch是面向文档,关系行数据库和elasticsearch客观的对比 一切都是JSON
Relational DB | ElasticSearch |
---|---|
数据库(database) | 索引(indices) |
表(tables) | types |
行(row) | documents |
字段(columns) | fields |
elasticsearch(集群)中可以包含多个索引(数据库),每个索引中可以包含多个类型(表),每个类型下又包含多个文档(行),每个文档中又包含多个字段(列)。
elasticsearch在后台把每个索引划分成多个分片,每分分片可以在集群中的不同服务器之间迁移
一个人就是一个集群!默认的集群名称就是elasticsearch
一个索引类型中,包含多个文档,比如说文档1,文档2.当我们索引一篇文档时,可以通过这样的一个顺序找到它:索引 –> 类型
–> 文档ID,通过这个组合我们就能索引到某个具体的文档。 注意:ID不必是整数,实际上它是个字符串
文档
之前说elasticsearch是面向文档的,那么就意味着索引和搜索数据的最小单位是文档,elasticsearch中,文档有几个重要的属性:
尽管我们可以随意的新增或者忽略某个字段,但是,每个字段的类型非常重要,比如一个年龄字段类型,可以是字符串也可以是整型,因为elasticsearch或保存字段和类型之间的映射及其他的设置。这种映射具体到每个映射的每种类型,这也是为什么在elasticsearch中,类型有时候也称为映射类型。
类型
类型是文档的逻辑容器,就像关系型数据库一样,表格是行的容器。类型中对于字段的定义称为映射,比如name映射为字符串类型。我们说文档是无模式的,它们不需要拥有映射中所定义的所有字段,比如新增一个字段,那么elasticsearch是怎么做的呢?elasticsearch会自动的将新字段加入映射,但是这个字段的不确定它是什么类型,elasticsearch就开始猜,如果这个值是18,那么elasticsearch会认为它是整形。但是elasticsearch也可能猜不对,所以最安全的方式就是提前定义好所需要的映射,这点跟关系型数据库殊途同归了,先定义好字段,然后再使用,别整什么幺蛾子。
索引
就是数据库!
索引是映射类型的容器,elasticsearch中的索引是一个非常大的文档集合。索引存储了映射类型的字段和其他设置。然后它们被存储到了各个分片上了。我们来研究下分片是如何工作的。
一个集群至少有一个节点,而一个节点就是一个elasricsearch进程,节点可以有多个索引默认的,一个集群至少有一个节点,而一个节点就是一个elasricsearch进程,节点可以有多个索引默认的有个5个分片( primary shard ,又称主分片)构成的,每一个主分片会有一个副本( replica shard ,又称复制分片)
上图是一个有3个节点的集群,可以看到主分片和对应的复制分片都不会在同一个节点内,这样有利于某个节点挂掉了,数据也不至于丢失。实际上,一个分片是一个Lucene索引,一个包含倒排索引的文件目录,倒排索引的结构使得elasticsearch在不扫描全部文档的情况下,就能告诉你哪些文档包含特定的关键字。不过,等等,倒排索引是什么鬼?
倒排索引
elasticsearch使用的是一种称为倒排索引的结构,采用Lucene倒排索作为底层。这种结构适用于快速的全文搜索,一个索引由文档中所有不重复的列表构成,对于每一个词,都有一个包含它的文档列表。例如,现在有两个文档,每个文档包含如下内容:
study every day,good good up to forever #文档1包含的内容
To forever,study every day,good good up #文档2包含的内容
为了创建倒排索引,我们首先要将每个文档拆分成独立的词(或称为词条或者tokens),然后创建一个包含所有不重复的词条的排序列表,然后列出每个词条出现在哪个文档:
现在,我们试图搜索to forever,只需要查看包含每个词条的文档
两个文档都匹配,但是第一个文档比第二个匹配程度更高。如果没有别的条件,现在,这两个包含关键字的文档都将返回。再来看一个示例,比如我们通过博客标签来搜索博客文章。那么倒排索引列表就是这样的一个结构:
如果要搜索含有python标签的文章,那相对于查找所有原始数据而言,查找倒排索引后的数据将会快的多。只需要-查看标签这一栏,然后获取相关的文章ID即可。完全过滤掉无关的数据,提高效率!
elasticsearch的索引和Lucene的索引对比
在elasticsearch中,索引这个词被频繁使用,这就是术语的使用。在elasticsearch中,索引被分为多个分片,每份分片是一个Lucene的索引。所以一个elasticsearch索引是由多个Lucene索引组成的。别问为什么,谁让elasticsearch使用Lucene作为底层呢!如无特指,说起索引都是指elasticsearch的索引。
接下来的一切操作都在kibana中Dev Tools下的Console里完成。基础操作!
一种软件架构风格,而不是标准,只是提供了一组设计原则和约束条件。它主要用于客户端和服务器交互类的软件。基于这个风格
设计的软件可以更简洁,更有层次,更易于实现缓存等机制。
基本Rest命令说明∶
method | url地址 | 描述 |
---|---|---|
PUT | localhost:9200/索引名称/类型名称/文档id | 创建文档(指定文档id ) |
POST | localhost:9200/索引名称/类型名称 | 创建文档(随机文档id ) |
POST | localhost:9200/索引名称/类型名称/文档id/_update | 修改文档 |
DELETE | localhost:9200/索引名称/类型名称/文档id | 删除文档 |
GET | localhost:9200/索引名称/类型名称/文档id | 查询文档通过文档id |
POST | localhost:9200/索引名称/类型名称/search | 查询所有数据 |
基础测试
PUT /索引名/~类型名~/文档id
{请求体}
完成自动增加索引 数据也成功添加了
那么name 字段用不用指定类型呢。毕竟我们关系型数据库,是需要指定类型的啊
字符串类型
text、keyword
数值类型
long、integer、short、byte、double、float、half float、scaled float
日期类型
date
te布尔类型
boolean
二进制类型
binary
等等…
5. 查看默认的信息
如果自己的文档字段没有指定,那么es就会给我们默认配置字段类型
扩展: 通过命令 elasticsearch 索引情况!通过get _cat/ 可以获得es的当前的很多信息
修改 提交还是使用PUT 即可 ! 然后覆盖 ! 最新办法
现在的方法
删除索引
通过DELETE命令实现删除,根据的请求来判断是删除索引还是删除文档记录
使用RESTFUL 分割使我们ES推荐给大家使用的
PUT /kuangshen/user/1
{
"name" : "狂神说",
"age" : 23,
"desc" : "一顿操作猛如虎,一看工资2500",
"tags" : [
"技术宅","温暖","直男"
]
}
简单的搜索
GET kuangshen/user/1
简单的条件查询,可以根据默认的映射规则,产生基本的查询
复杂操作搜索(selectÿ
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。