赞
踩
Hadoop物流可视化系统设计与实现
随着信息技术的飞速发展,物流行业产生了海量的数据,这些数据包含了订单信息、运输路线、仓储状态等丰富的信息和价值。然而,传统的数据处理和分析方法在处理如此庞大的数据量时显得力不从心,无法满足物流行业对实时性和准确性的需求。因此,开发一个高效的物流数据可视化系统显得尤为重要。Hadoop作为一种分布式计算框架,以其强大的数据处理能力成为处理大数据的理想选择。本研究旨在设计并实现一个基于Hadoop的物流数据可视化系统,通过对物流数据的深度挖掘和分析,为物流行业提供更高效、更精准的决策支持。
物流行业在运营过程中积累了大量的数据,这些数据是宝贵的资源,但目前尚未得到充分的利用。传统的数据处理方法在处理海量数据时存在处理速度慢、分析结果不准确等问题,无法满足物流行业对实时性和准确性的需求。Hadoop分布式计算框架以其高可扩展性、高容错性和高效的数据处理能力,成为处理大数据的理想选择。
目前,虽然有一些物流数据可视化分析系统,但它们主要存在以下问题:
相比之下,基于Hadoop的物流数据可视化系统能够充分利用Hadoop的分布式计算能力,解决上述问题,为物流行业提供更高效、更精准的数据分析支持。
(此处列出相关文献,由于篇幅限制,不具体列出)
以上是Hadoop物流可视化系统的开题报告,希望能为课题的顺利开展提供有力支持。
核心算法代码分享如下:
- from flask import Flask, render_template, request, redirect, url_for
- import json
- from flask_mysqldb import MySQL
- from flask import Flask, send_from_directory,render_template, request, redirect, url_for, jsonify
- import csv
- import os
- import pymysql
- # 创建应用对象
- app = Flask(__name__)
- app.config['MYSQL_HOST'] = 'bigdata'
- app.config['MYSQL_USER'] = 'root'
- app.config['MYSQL_PASSWORD'] = '123456'
- app.config['MYSQL_DB'] = 'hive_chinawutong'
- mysql = MySQL(app) # this is the instantiation
-
-
- @app.route('/tables01')
- def tables01():
- cur = mysql.connection.cursor()
- cur.execute('''SELECT replace(REPLACE(REPLACE(from_province, '区', ''), '省', ''),'市','') from_province,num FROM table01''')
- #row_headers = [x[0] for x in cur.description] # this will extract row headers
- row_headers = ['from_province','num'] # this will extract row headers
- rv = cur.fetchall()
- json_data = []
- #print(json_data)
- for result in rv:
- json_data.append(dict(zip(row_headers, result)))
- return json.dumps(json_data, ensure_ascii=False)
-
- @app.route('/tables02')
- def tables02():
- cur = mysql.connection.cursor()
- cur.execute('''SELECT pub_time,num,LENGTH(pub_time) len_time FROM table02 ORDER BY len_time desc ''')
- #row_headers = [x[0] for x in cur.description] # this will extract row headers
- row_headers = ['pub_time','num'] # this will extract row headers
- rv = cur.fetchall()
- json_data = []
- #print(json_data)
- for result in rv:
- json_data.append(dict(zip(row_headers, result)))
- return json.dumps(json_data, ensure_ascii=False)
-
- @app.route('/tables03')
- def tables03():
- cur = mysql.connection.cursor()
- cur.execute('''SELECT * FROM table03 order by rztime asc''')
- #row_headers = [x[0] for x in cur.description] # this will extract row headers
- row_headers = ['rztime','num'] # this will extract row headers
- rv = cur.fetchall()
- json_data = []
- #print(json_data)
- for result in rv:
- json_data.append(dict(zip(row_headers, result)))
- return json.dumps(json_data, ensure_ascii=False)
-
- @app.route('/tables04')
- def tables04():
- cur = mysql.connection.cursor()
- cur.execute('''SELECT * FROM table04''')
- #row_headers = [x[0] for x in cur.description] # this will extract row headers
- row_headers = ['yslx','num'] # this will extract row headers
- rv = cur.fetchall()
- json_data = []
- #print(json_data)
- for result in rv:
- json_data.append(dict(zip(row_headers, result)))
- return json.dumps(json_data, ensure_ascii=False)
-
- @app.route("/getmapcountryshowdata")
- def getmapcountryshowdata():
- filepath = r"D:\\wuliu_hadoop_spark_spider2025\\echarts\\data\\maps\\china.json"
- with open(filepath, "r", encoding='utf-8') as f:
- data = json.load(f)
- return json.dumps(data, ensure_ascii=False)
-
-
- @app.route('/tables05')
- def tables05():
- cur = mysql.connection.cursor()
- cur.execute('''SELECT * FROM table05 order by num asc''')
- #row_headers = [x[0] for x in cur.description] # this will extract row headers
- row_headers = ['hwlx','num'] # this will extract row headers
- rv = cur.fetchall()
- json_data = []
- #print(json_data)
- for result in rv:
- json_data.append(dict(zip(row_headers, result)))
- return json.dumps(json_data, ensure_ascii=False)
-
- @app.route('/tables06')
- def tables06():
- cur = mysql.connection.cursor()
- cur.execute('''SELECT * FROM table06''')
- #row_headers = [x[0] for x in cur.description] # this will extract row headers
- row_headers = ['weight_union','num'] # this will extract row headers
- rv = cur.fetchall()
- json_data = []
- #print(json_data)
- for result in rv:
- json_data.append(dict(zip(row_headers, result)))
- return json.dumps(json_data, ensure_ascii=False)
-
- @app.route('/tables07')
- def tables07():
- cur = mysql.connection.cursor()
- cur.execute('''SELECT * FROM table07 order by num asc''')
- #row_headers = [x[0] for x in cur.description] # this will extract row headers
- row_headers = ['recieve_province','num'] # this will extract row headers
- rv = cur.fetchall()
- json_data = []
- #print(json_data)
- for result in rv:
- json_data.append(dict(zip(row_headers, result)))
- return json.dumps(json_data, ensure_ascii=False)
-
- @app.route('/tables08')
- def tables08():
- cur = mysql.connection.cursor()
- cur.execute('''SELECT * FROM table08''')
- #row_headers = [x[0] for x in cur.description] # this will extract row headers
- row_headers = ['end_time','num'] # this will extract row headers
- rv = cur.fetchall()
- json_data = []
- #print(json_data)
- for result in rv:
- json_data.append(dict(zip(row_headers, result)))
- return json.dumps(json_data, ensure_ascii=False)
-
- @app.route('/tables09')
- def tables09():
- cur = mysql.connection.cursor()
- cur.execute('''SELECT * FROM table09''')
- #row_headers = [x[0] for x in cur.description] # this will extract row headers
- row_headers = ['wlmc','num'] # this will extract row headers
- rv = cur.fetchall()
- json_data = []
- #print(json_data)
- for result in rv:
- json_data.append(dict(zip(row_headers, result)))
- return json.dumps(json_data, ensure_ascii=False)
-
-
- @app.route('/data',methods=['GET'])
- def data():
- limit = int(request.args['limit'])
- page = int(request.args['page'])
- page = (page-1)*limit
- conn = pymysql.connect(host='bigdata', user='root', password='123456', port=3306, db='hive_chinawutong',
- charset='utf8mb4')
-
- cursor = conn.cursor()
- if (len(request.args) == 2):
- cursor.execute("select count(*) from ods_chinawutong");
- count = cursor.fetchall()
- cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
- cursor.execute("select * from ods_chinawutong limit "+str(page)+","+str(limit));
- data_dict = []
- result = cursor.fetchall()
- for field in result:
- data_dict.append(field)
- else:
- weight_union = str(request.args['weight_union'])
- wlmc = str(request.args['wlmc']).lower()
- if(weight_union=='不限'):
- cursor.execute("select count(*) from ods_chinawutong where wlmc like '%"+wlmc+"%'");
- count = cursor.fetchall()
- cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
- cursor.execute("select * from ods_chinawutong where wlmc like '%"+wlmc+"%' limit " + str(page) + "," + str(limit));
- data_dict = []
- result = cursor.fetchall()
- for field in result:
- data_dict.append(field)
- else:
- cursor.execute("select count(*) from ods_chinawutong where wlmc like '%"+wlmc+"%' and weight_union like '%"+weight_union+"%'");
- count = cursor.fetchall()
- cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
- cursor.execute("select * from ods_chinawutong where wlmc like '%"+wlmc+"%' and weight_union like '%"+weight_union+"%' limit " + str(page) + "," + str(limit));
- data_dict = []
- result = cursor.fetchall()
- for field in result:
- data_dict.append(field)
- table_result = {"code": 0, "msg": None, "count": count[0], "data": data_dict}
- cursor.close()
- conn.close()
- return jsonify(table_result)
-
-
- if __name__ == "__main__":
- app.run(debug=False)

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。