赞
踩
创建环境:
conda create -n llama3_env python=3.10
conda activate llama3_env
conda install pytorch torchvision torchaudio cudatoolkit=11.7 -c pytorch
安装Hugging Face的Transformers库:
pip install transformers sentencepiece
下载模型
https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat/tree/main
编写代码调用
- import torch
- from transformers import AutoModelForCausalLM, AutoTokenizer
-
- # 检查CUDA是否可用,并设置设备
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
-
- print(torch.cuda.is_available())
- print(device)
-
- # 加载模型和tokenizer
- model_name = "F:\\ollama_models\\Llama3-8B-Chinese-Chat"
- model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
- tokenizer = AutoTokenizer.from_pretrained(model_name)
-
- # 编写推理函数
- # def generate_text(prompt):
- # inputs = tokenizer(prompt, return_tensors="pt").to(device)
- # outputs = model.generate(inputs['input_ids'], max_length=100)
- # return tokenizer.decode(outputs[0], skip_special_tokens=True)
- #
- # # 示例使用
- # prompt = "写一首诗吧,以春天为主题"
- # print(generate_text(prompt))
-
- messages = [
- {"role": "user", "content": "写一首诗吧"},
- ]
-
- input_ids = tokenizer.apply_chat_template(
- messages, add_generation_prompt=True, return_tensors="pt"
- ).to(model.device)
-
- outputs = model.generate(
- input_ids,
- max_new_tokens=8192,
- do_sample=True,
- temperature=0.6,
- top_p=0.9,
- )
- response = outputs[0][input_ids.shape[-1]:]
- print(tokenizer.decode(response, skip_special_tokens=True))

非常慢,大概用了一两分钟回答一个问题。
还是老实用ollama跑qwen吧
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。