当前位置:   article > 正文

机器学习——决策树及其可视化

机器学习——决策树及其可视化

1、决策树概念

顾名思义,决策树是利用数据结构中树结构来进行判断,每一个结点相当于一个判断条件,叶子结点即是最终的类别。以鸢尾花为例,可以得到如下的决策树:
鸢尾花分类决策树可视化

2、决策树分类的依据是什么?

根据前面分析,我们知道,决策树每个非叶子节点相当于一个判断条件,那如何来选择这些条件呢?举个简单的例子,给定两个样本,如果判断条件不同,那么分类的次数和结果可能就不同。为了方便选择,常用的方法有以下三种:
1)信息增益:根据信息的定义之一:信息是可以减少不确定性的东西(香农—信息论奠基人),信息增益是基于(Entropy)的度量,熵是一个集合中数据的不确定性或混乱程度。信息增益衡量的是在某个特征上划分数据后,数据的不确定性减少了多少。信息增益越大,特征越好。
公式:
信息增益公式
2)基尼系数
基尼指数是一种衡量集合纯度的度量,基尼指数越低,数据纯度越高。在决策树中,我们选择基尼指数最小的特征进行划分。
公式:
基尼系数
3)增益率
增益率是对信息增益的一种改进,旨在解决信息增益偏向于选择取值较多的特征的问题。增益率通过对信息增益进行归一化处理来减少这种偏好。
通常使用基尼系数和信息增益来衡量分类的依据。

3、根据天气决策是否打网球案例。(使用决策树)

import pandas as pd
data = {
    'Outlook': ['Sunny', 'Sunny', 'Overcast', 'Rain', 'Rain', 'Rain', 'Overcast', 'Sunny', 'Sunny', 'Rain', 'Sunny', 'Overcast', 'Overcast', 'Rain'],
    'Temperature': ['Hot', 'Hot', 'Hot', 'Mild', 'Cool', 'Cool', 'Cool', 'Mild', 'Cool', 'Mild', 'Mild', 'Mild', 'Hot', 'Mild'],
    'Humidity': ['High', 'High', 'High', 'High', 'Normal', 'Normal', 'Normal', 'High', 'Normal', 'Normal', 'Normal', 'High', 'Normal', 'High'],
    'Windy': [False, True, False, False, False, True, True, False, False, False, True, True, False, True],
    'PlayTennis': ['No', 'No', 'Yes', 'Yes', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'No']
}
data = pd.DataFrame(data)
X = data[['Outlook', 'Temperature', 'Humidity', 'Windy']]
y = data['PlayTennis']
x=pd.get_dummies(X)   # 转化成独热码
from sklearn.tree import DecisionTreeClassifier
estimator = DecisionTreeClassifier(criterion='gini')    # criterion为选择标准,默认为gini,即基尼系数,entropy为信息增益
estimator.fit(x,y)
# 输入十个案例进行判断
test_data = [
    {"Outlook": "Rain", "Temperature": "Hot", "Humidity": "High", "Windy": True, "PlayTennis": "No"},
    {"Outlook": "Sunny", "Temperature": "Mild", "Humidity": "High", "Windy": True, "PlayTennis": "No"},
    {"Outlook": "Overcast", "Temperature": "Mild", "Humidity": "High", "Windy": False, "PlayTennis": "Yes"},
    {"Outlook": "Sunny", "Temperature": "Cool", "Humidity": "Normal", "Windy": False, "PlayTennis": "Yes"},
    {"Outlook": "Rain", "Temperature": "Cool", "Humidity": "High", "Windy": False, "PlayTennis": "Yes"},
    {"Outlook": "Sunny", "Temperature": "Hot", "Humidity": "Normal", "Windy": True, "PlayTennis": "No"},
    {"Outlook": "Overcast", "Temperature": "Hot", "Humidity": "Normal", "Windy": True, "PlayTennis": "Yes"},
    {"Outlook": "Rain", "Temperature": "Mild", "Humidity": "Normal", "Windy": True, "PlayTennis": "No"},
    {"Outlook": "Overcast", "Temperature": "Cool", "Humidity": "High", "Windy": False, "PlayTennis": "Yes"},
    {"Outlook": "Sunny", "Temperature": "Mild", "Humidity": "Normal", "Windy": False, "PlayTennis": "Yes"}
]
test_data = pd.DataFrame(test_data)
x_test = test_data[['Outlook', 'Temperature', 'Humidity', 'Windy']]
x_test = pd.get_dummies((x_test))
estimator.predict(x_test)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

预测结果如下所示:
在这里插入图片描述

estimator.score(x_test,test_data['PlayTennis'])  # 正确率计算,结果为0.8
  • 1

4、决策树的可视化

使用API:sklearn.tree.export_graphviz(estimator, out_file="", feature_names=[","])

out_file后缀需要为.dot文件,feature_names传入对应的特征名称即可,否则显示异常
  • 1

最后将生成的.dot文件在决策树可视化网站显示即可,以上述为例:
决策树可视化文件生成

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/794337
推荐阅读
相关标签
  

闽ICP备14008679号