赞
踩
首先,需要安装 FastAPI 和 Uvicorn(用于运行 FastAPI 应用程序):
pip install fastapi uvicorn
使用 FastAPI 框架:
from fastapi import FastAPI, HTTPException, Request from pydantic import BaseModel import json import mindspore as ms from mindformers import AutoConfig, AutoModel, AutoTokenizer app = FastAPI() ms.set_context(mode=ms.GRAPH_MODE, device_target="Ascend", device_id=0) config = AutoConfig.from_pretrained("baichuan2_6b") config.checkpoint_name_or_path = "../mindformers/checkpoint_download/baichuan2baichuan2_6b.ckpt" model = AutoModel.from_config(config) tokenizer = AutoTokenizer.from_pretrained("baichuan2_6b") class RequestData(BaseModel): text: str @app.post('/baichuan2_bot') async def say_hello_func(data: RequestData): print("----------- in hello func ----------") text = data.text inputs = tokenizer(tokenizer.build_prompt(text))["input_ids"] print(tokenizer.decode(inputs)) outputs = model.generate(inputs, max_length=14096) outputs_text = tokenizer.decode(outputs) return {"response": outputs_text} @app.get('/goodbye') async def say_goodbye_func(): print("----------- in goodbye func ----------") return {'message': 'Goodbye!'} @app.post('/') async def default_func(request: Request): print("----------- in default func ----------") data = await request.json() return {'message': 'Called default func!', 'data': data} if __name__ == '__main__': import uvicorn uvicorn.run(app, host="0.0.0.0", port=8080)
"""Baichuan2_13b models' APIs.""" from typing import Optional import math import numpy as np import mindspore.common.dtype as mstype try: from mindspore._checkparam import Validator except ImportError: import mindspore._checkparam as Validator from mindspore import Tensor, nn, ops from mindspore.common.parameter import Parameter from mindspore.ops import operations as P from mindspore.common.initializer import initializer, HeUniform try: from mindspore.nn.layer.flash_attention import FlashAttention FLASHATTENTION_VALID = True except ImportError: FLASHATTENTION_VALID = False from mindformers.core.loss.loss import CrossEntropyLoss from mindformers.mindformer_book import MindFormerBook from mindformers.models.base_model import BaseModel from mindformers.models.utils import cell_reuse from mindformers.modules.transformer.op_parallel_config import _check_config from mindformers.modules.transformer import AttentionMask, TransformerOpParallelConfig from mindformers.modules.layers import Linear, _check_input_dtype, _check_past_none_input_none, AlibiTensorV2 from mindformers.tools.register.register import MindFormerModuleType, MindFormerRegister from mindformers.models.llama.llama import layer_compute_dtype from mindformers.models.llama.llama_config import LlamaConfig from mindformers.models.llama.llama_layer import LlamaEmbedding, LlamaFeedForward, LlamaRMSNorm from mindformers.tools.logger import logger __all__ = ['Baichuan13BV2ForCausalLM', 'Baichuan13BV2Model'] @MindFormerRegister.register(MindFormerModuleType.MODELS) class Baichuan13BV2ForCausalLM(BaseModel): r""" Provide baichuan2_13B training loss or logits through network. Args: config (LlamaConfig): The config of baichuan2_13B model. Inputs: input_ids(Tensor): the tokenized inputs with datatype int32, Tensor of shape :math:`(batch, seq\_length)`. labels(Tensor): the tokenized labels with datatype int32, Tensor of shape :math:`(batch, seq\_length)`. input_position(Tensor): current position, used by model.predict. position_ids(Tensor): Reserved param, not used. attention_mask(Tensor): Reserved param, not used. input_embeds(Tensor): Reserved param, not used. init_reset(bool, optional): A bool tensor with shape [1], used to clear the past key parameter and past value parameter used in the incremental prediction. Default True. batch_valid_length(Tensor): the past calculated the index with datatype int32, used for incremental prediction. Tensor of shape :math:`(batch_size,)`. Default None. Returns: Tensor, the loss or logits of the network. Examples: >>> from mindformers.models.llama import LlamaConfig >>> from research.baichuan2.baichuan2_13b import Baichuan13BV2ForCausalLM >>> config = LlamaConfig(batch_size=2) >>> network = Baichuan13BV2ForCausalLM(config=config) """ _support_list = MindFormerBook.get_model_support_list()['llama'] @cell_reuse() def __init__(self, config: LlamaConfig = None): super(Baichuan13BV2ForCausalLM, self).__init__(config, auto_prefix=True) _check_config(config.parallel_config) self.ignore_token_id = config.ignore_token_id self.pad_token_id = config.pad_token_id self.dtype = config.compute_dtype self.reshape = P.Reshape() self.cast = P.Cast() self.slice = P.StridedSlice() self.not_equal = P.NotEqual() self.mul = P.Mul() self.add = P.Add() self.model = Baichuan13BV2Model(config=config) self.lm_head = NormHead(hidden_size=config.hidden_size, vocab_size=config.vocab_size, compute_dtype=config.compute_dtype) self.loss = CrossEntropyLoss(parallel_config=config.parallel_config) dp = config.parallel_config.data_parallel self.slice.shard(((dp, 1),)) self.not_equal.shard(((dp, 1), ())) self.mul.shard(((dp, 1), (dp, 1))) self.add.shard(((dp, 1), ())) self.lm_head.shard(config.parallel_config) self.load_checkpoint(config) # pylint: disable=W0613 def prepare_inputs_for_generation(self, input_ids, **kwargs): return { "input_ids": Tensor(input_ids, mstype.int32) } # pylint: disable=W0613 def construct(self, input_ids, labels=None, input_position=None, position_ids=None, attention_mask=None, input_embeds=None, init_reset=True, batch_valid_length=None): """Baichuan13BV2ForCausalLM forward.""" bsz, seqlen = input_ids.shape if self.training: tokens = self.slice(input_ids, (0, 0), (bsz, seqlen - 1), (1, 1)) else: tokens = input_ids output = self.model(tokens, input_position, init_reset, batch_valid_length) logits = self.lm_head(output) input_mask = self.cast(self.not_equal(tokens, self.pad_token_id), self.dtype) if labels is None: labels = self.slice(input_ids, (0, 1), (bsz, seqlen), (1, 1)) else: if labels.ndim > 1: if self.training: labels = self.slice(labels, (0, 1), (bsz, seqlen), (1, 1)) label_mask = self.cast(self.not_equal(labels, self.ignore_token_id), self.dtype) input_mask = self.mul(input_mask, label_mask) logits = self.cast(logits, mstype.float32) if not self.training: logits = self.reshape(logits, (bsz, seqlen, -1)) # makes cast effective to avoid allgather issue in Mindspore1.10 input_mask = self.add(input_mask, 1) return logits, tokens, input_mask if logits.ndim > 2: logits = self.reshape(logits, (-1, logits.shape[-1])) labels = self.reshape(labels, (-1,)) input_mask = self.reshape(input_mask, (-1,)) loss = self.loss(logits, labels, input_mask) return loss class Baichuan13BV2Model(BaseModel): r""" Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Baichuan13BV2DecoderLayer`] Args: config(LlamaConfig): the config of network Inputs: input_ids: the tokenized inputs with datatype int32 Returns: output: Tensor, the output of baichuan2_13b decoderlayer """ _support_list = MindFormerBook.get_model_support_list()['llama'] def __init__(self, config: LlamaConfig = None): super().__init__(config, auto_prefix=True) _check_config(config.parallel_config) if config.batch_size or config.use_past: Validator.check_positive_int(config.batch_size) self.dtype = config.compute_dtype self.num_layers = config.num_layers self.pad_token_id = config.pad_token_id self.is_first_iteration = True self.use_past = config.use_past self.use_flash_attention = config.use_flash_attention and FLASHATTENTION_VALID if self.use_flash_attention: logger.info("Enable flash attention.") elif config.use_flash_attention: logger.info("Current MindSpore do not support flash attention.") self.get_attention_mask = AttentionMask( config.seq_length, parallel_config=config.parallel_config.dp_mp_config).to_float(config.compute_dtype) self.multiply_data = Tensor([-10000.0], dtype=config.compute_dtype) self.one = Tensor([1.0], dtype=config.compute_dtype) self.all_ones_attention_mask_alibi = P.Ones()((1, config.seq_length), self.dtype) self.reshape = P.Reshape() self.cast = P.Cast() self.tile = P.Tile() self.mul_mask = P.Mul() self.mul_alibi = P.Mul() self.sub = P.Sub() self.expand_dims = P.ExpandDims() self.not_equal = P.NotEqual() self.gather = P.Gather() self.transpose = P.Transpose() self.tok_embeddings = LlamaEmbedding( config.vocab_size, config.hidden_size, param_init_type=config.param_init_type) self.layers = nn.CellList() for layer_id in range(config.num_layers): layer = Baichuan13BDecodeLayer(config.batch_size, config.seq_length, layer_id, dim=config.hidden_size, n_heads=config.num_heads, multiple_of=config.multiple_of, n_kv_heads=config.n_kv_heads, ffn_dim_multiplier=config.ffn_dim_multiplier, norm_eps=config.rms_norm_eps, compute_dtype=config.compute_dtype, layernorm_compute_dtype=config.layernorm_compute_type, softmax_compute_dtype=config.softmax_compute_type, param_init_type=config.param_init_type, use_past=config.use_past, use_flash_attention=config.use_flash_attention, compute_in_2d=config.compute_in_2d, use_past_shard=config.use_past_shard, parallel_config=config.parallel_config) layer_compute_dtype(layer, layer_id, config.offset, config.parallel_config, config.num_layers, select_recompute=config.parallel_config.recompute.select_recompute) self.layers.append(layer) self.norm_out = LlamaRMSNorm(config.hidden_size, config.rms_norm_eps, compute_type=config.layernorm_compute_type) self.build_alibi_tensor = AlibiTensorV2(seq_length=config.seq_length, num_heads=config.num_heads) dp = config.parallel_config.data_parallel mp = config.parallel_config.model_parallel self.tok_embeddings.pipeline_stage = 0 if config.parallel_config.pipeline_stage > 1: self.norm_out.pipeline_stage = config.parallel_config.pipeline_stage - 1 self.tok_embeddings.set_comm_fusion(2) self.norm_out.set_comm_fusion(2) else: self.tok_embeddings.set_comm_fusion(config.parallel_config.gradient_aggregation_group) self.norm_out.set_comm_fusion(config.parallel_config.gradient_aggregation_group) self.tok_embeddings.shard(config.parallel_config) self.build_alibi_tensor.shard(config.parallel_config) self.tile.shard(((1, 1, 1, 1), ())) self.sub.shard(((1,), (dp, 1, 1))) self.mul_mask.shard(((dp, 1, 1, 1), (1,))) self.mul_alibi.shard(((dp, mp, 1, 1), (dp, 1, 1, 1))) # (dp, mp, 1, 1) self.expand_dims.shard(((dp, 1, 1),)) self.not_equal.shard(((dp, 1), ())) self.gather.shard(((dp, mp, 1, 1), (1,))) self.transpose.shard(((1, mp, dp, 1),)) if config.compute_in_2d: self.norm_out.shard((dp, 1)) else: self.norm_out.shard((dp, 1, 1)) if self.use_past: seq_range = np.arange(config.seq_length).reshape(1, 1, -1) self.ones = P.Ones() self.range = Tensor(np.tile(seq_range, (config.batch_size, 1, 1)), mstype.int32) self.gather_past = P.Gather() self.expand_dims = P.ExpandDims() self.le_past = P.LessEqual() # pylint: disable=W0613 def construct(self, tokens: Tensor, input_position=None, init_reset=True, batch_valid_length=None): """Forward of baichuan2_13b model.""" # preprocess bs, _ = tokens.shape if self.use_past: if not isinstance(init_reset, Tensor): init_reset = Tensor([init_reset], mstype.bool_) if not isinstance(batch_valid_length, Tensor): batch_valid_length = self.ones((bs, 1), mstype.int32) if self.is_first_iteration: input_mask = self.cast(self.not_equal(tokens, self.pad_token_id), self.dtype) mask = self.get_attention_mask(input_mask) alibi_tensor = self.build_alibi_tensor(input_mask, self.dtype) # mask: [bs, seq, seq] else: cur_pos = batch_valid_length - 1 valid_length = self.reshape(cur_pos, (-1, 1, 1)) mask = self.cast(self.le_past(self.range, valid_length), self.dtype) alibi_tensor = self.build_alibi_tensor(self.all_ones_attention_mask_alibi, self.dtype) alibi_tensor = self.tile(alibi_tensor, (bs, 1, 1, 1)) alibi_tensor = self.gather(alibi_tensor, cur_pos[0], 2) alibi_tensor = self.transpose(alibi_tensor, (2, 1, 0, 3)) # mask: [bs, 1, 1] mask = self.sub(self.one, self.cast(mask, self.dtype)) if not self.use_flash_attention: mask = self.expand_dims(mask, 1) mask = self.mul_mask(mask, self.multiply_data) # tokens: [bs, seq/1] h = self.tok_embeddings(tokens) # h: [bs, seq/1, hidden_dim] for i in range(self.num_layers): h, _ = self.layers[i](h, alibi_tensor, mask, init_reset=init_reset, batch_valid_length=batch_valid_length) output = self.norm_out(h) return output class Baichuan13BDecodeLayer(nn.Cell): r""" Transformer Layer. This is an implementation of the single layer of the transformer encoder layer, including multihead attention and feedward layer. Args: batch_size(int): The batch size of the input tensor when do increnmental prediction. Should be a positive value. When do training or prediction, the argument will not work and the user can just pass None to the argument. seq_length(int): The input sequence length. layer_id(int): The layer id of current transformer block layer. dim(int): The hidden size of the input. num_heads(int): The number of the heads. multiple_of(int): The SwiGLU hidden layer size multiple of large power of 2. norm_eps (float): The epsilon value of the denominator. Default 1e-5. compute_dtype(dtype.Number): The computation type of the layer. Should be mstype.float32 or mstype.float16. Default mstype.float32. layernorm_compute_type(dtype.Number): The computation type of the norm. Should be mstype.float32 or mstype.float16. Default mstype.float32. softmax_compute_type(dtype.Number): The computation type of the softmax in the attention. Should be mstype.float32 or mstype.float16. Default mstype.float32. param_init_type(dtype.Number): The parameter initialization type of the module. Should be mstype.float32 or mstype.float16. Default mstype.float32. use_past(bool): Use the past state to compute, used for incremental prediction. For example, if we have two words and want to generate the ten more words. We just need to compute the two words' state only once, and generate the next word one by one. When use_past is True, there are two steps to run the prediction. In the first step, set the is_first_iteration to be True by `model.add_flags_recursive(is_first_iteration=True)`, and pass the full inputs. Then, set the is_first_iteration to be False by `model.add_flags_recursive(is_first_iteration=False)`. At this moment, pass the single step's input tensor, and loop it. Default False. parallel_config(OpParallelConfig, MoEParallelConfig): The parallel configure. When MoE is applied, MoEParallelConfig is effective, otherwise OpParallelConfig is effective. Default `default_dpmp_config`, an instance of `OpParallelConfig` with default args. Inputs: - **x** (Tensor) - Float Tensor, shape should be [batch_size, seq_length, hidden_size] or [batch_size * seq_length, hidden_size], if the use_past is False or is_first_iteration=True. Otherwise, should be [batch_size, 1, hidden_size] - **alibi_tensor** (Tensor) - Alibi Tensor for position embedding used in attention. - **mask** (Tensor) - Float Tensor, If the use_past is False or is_first_iteration=True, the attention mask matrix should ba [batch_size, seq_length, seq_length], or None. None means there will be no mask in softmax computation. Otherwise, should be [batch_size, 1, hidden_size] - **init_reset** (Tensor) - A bool tensor with shape [1], used to clear the past key parameter and past value parameter used in the incremental prediction. Only valid when use_past is True. Default True. - **batch_valid_length** (Tensor) - Int32 tensor with shape [batch_size] the past calculated the index. Used for incremental prediction when the use_past is True. Default None. Outputs: Tuple, a tuple contains(`output`, `layer_present`). - **output** (Tensor) - The float tensor of the output of the layer with shape (batch_size, seq_length, hidden_size) or (batch_size * seq_length, hidden_size), if the use_past is False or is_first_iteration=True. Otherwise, it will be (batch_size, 1, hidden_size) - **layer_present** (Tuple) - A tuple of the Tensor of the projected key and value vector with ((batch_size, num_heads, head_dim, seq_length), (batch_size, num_heads, seq_length, head_dim)). """ def __init__(self, batch_size, seq_length, layer_id, dim: int = 512, n_heads: int = 8, multiple_of: int = 256, n_kv_heads: Optional[int] = None, ffn_dim_multiplier: Optional[int] = None, norm_eps: float = 1e-5, compute_dtype=mstype.float16, layernorm_compute_dtype=mstype.float32, softmax_compute_dtype=mstype.float32, param_init_type=mstype.float32, use_past=False, use_flash_attention=False, compute_in_2d=False, use_past_shard=False, parallel_config=TransformerOpParallelConfig()): super().__init__() if batch_size or use_past: Validator.check_positive_int(batch_size) self.batch_size = batch_size self.compute_in_2d = compute_in_2d self.seq_length = seq_length self.layer_id = layer_id self.hidden_size = dim self.n_head = n_heads self.head_dim = self.hidden_size // self.n_head self.n_kv_head = n_heads if n_kv_heads is None else n_kv_heads self.dtype = compute_dtype self.is_first_iteration = True self.use_past = use_past self.compute_in_2d = compute_in_2d self.key_past = None self.value_past = None self.reshape = P.Reshape() self.add = P.Add() self.attention_norm = LlamaRMSNorm(self.hidden_size, norm_eps, compute_type=layernorm_compute_dtype) self.ffn_norm = LlamaRMSNorm(self.hidden_size, norm_eps, compute_type=layernorm_compute_dtype) self.attention = Baichuan13BAttention(batch_size=batch_size, seq_length=seq_length, dim=dim, n_heads=n_heads, n_kv_heads=n_kv_heads, compute_dtype=compute_dtype, softmax_compute_dtype=softmax_compute_dtype, param_init_type=param_init_type, use_past=use_past, use_flash_attention=use_flash_attention, compute_in_2d=compute_in_2d, use_past_shard=use_past_shard, parallel_config=parallel_config) self.feed_forward = LlamaFeedForward(dim=self.hidden_size, hidden_dim=4 * self.hidden_size, multiple_of=multiple_of, ffn_dim_multiplier=ffn_dim_multiplier, compute_dtype=compute_dtype, param_init_type=param_init_type) dp = parallel_config.data_parallel mp = parallel_config.model_parallel self.feed_forward.shard(parallel_config) if self.compute_in_2d: self.add.shard(((dp, 1), (dp, 1))) self.attention_norm.shard((dp, 1)) self.ffn_norm.shard((dp, 1)) else: self.add.shard(((dp, 1, 1), (dp, 1, 1))) self.attention_norm.shard((dp, 1, 1)) self.ffn_norm.shard((dp, 1, 1)) self.feed_forward.mul.shard(((dp, 1, mp), (dp, 1, mp))) if parallel_config.use_seq_parallel and self.is_first_iteration: if self.compute_in_2d: self.add.shard(((dp * mp, 1), (dp * mp, 1))) self.attention_norm.shard((dp * mp, 1)) self.ffn_norm.shard((dp * mp, 1)) else: self.add.shard(((dp, mp, 1), (dp, mp, 1))) self.attention_norm.shard((dp, mp, 1)) self.ffn_norm.shard((dp, mp, 1)) self.feed_forward.w2.shard(((dp, mp), (1, mp)), out_strategy_matmul=((dp * mp, 1),)) if self.use_past: kv_shape = (batch_size, self.n_kv_head, seq_length, self.head_dim) self.key_past = Parameter(Tensor(np.zeros(kv_shape), self.dtype), name="key_past") self.value_past = Parameter(Tensor(np.zeros(kv_shape), self.dtype), name="value_past") self.mul_past = P.Mul().shard(((dp, 1, 1, 1), (1,))) self.assign_past = P.Assign().shard(((dp, 1, 1, 1), (dp, 1, 1, 1))) if use_past_shard: self.mul_past.shard(((dp, mp, 1, 1), (1,))) self.assign_past.shard(((dp, mp, 1, 1), (dp, mp, 1, 1))) def construct(self, x, alibi_tensor, mask=None, init_reset=True, batch_valid_length=None): """ Forward of transformer block. """ bs = x.shape[0] if self.use_past: if not isinstance(init_reset, Tensor): init_reset = Tensor([init_reset], mstype.bool_) if not isinstance(batch_valid_length, Tensor): batch_valid_length = self.ones((bs, 1), mstype.int32) self._check_input(x, alibi_tensor, mask, init_reset, batch_valid_length) # [bs, seq/1, hidden_dim] (first) [bs * seq/1, hidden_dim] (others) if self.compute_in_2d and x.ndim != 2: x = self.reshape(x, (-1, x.shape[-1])) # [bs, seq/1, hidden_dim] or [bs * seq/1, hidden_dim] input_x = self.attention_norm(x) key_reset = None value_reset = None if self.use_past and self.is_first_iteration: # reset states, init_reset True for reuse and False for reset self.assign_past(self.key_past, self.mul_past(self.key_past, self.cast(init_reset, self.dtype))) self.assign_past(self.value_past, self.mul_past(self.value_past, self.cast(init_reset, self.dtype))) key_reset = self.key_past value_reset = self.value_past # add dependency for desired execution order input_x = ops.depend(input_x, key_reset) input_x = ops.depend(input_x, value_reset) # [bs, seq/1, hidden_dim] or [bs * seq/1, hidden_dim] h, layer_present = self.attention(input_x, alibi_tensor, mask, self.key_past, self.value_past, batch_valid_length) h = self.add(x, h) ffn_norm = self.ffn_norm(h) # [bs, seq/1, hidden_dim] or [bs * seq/1, hidden_dim] ffn_out = self.feed_forward(ffn_norm) value_update = None key_update = None if self.use_past: # current key and value key_present, value_present = layer_present # update key and value calculated this step self.assign_past(self.key_past, key_present) self.assign_past(self.value_past, value_present) key_update = self.key_past value_update = self.value_past # add dependency for desired execution order key_update = ops.depend(key_update, key_reset) value_update = ops.depend(value_update, value_reset) # add dependency for desired execution order ffn_out = ops.depend(ffn_out, value_update) ffn_out = ops.depend(ffn_out, key_update) # [bs, seq/1, hidden_dim] or [bs * seq/1, hidden_dim] out = self.add(h, ffn_out) return out, layer_present def _check_input(self, x, alibi_tensor, mask, init_reset, batch_valid_length): r"""Check inputs""" _check_input_dtype( x.dtype, "x", [mstype.float32, mstype.float16], self.cls_name) _check_input_dtype(alibi_tensor.dtype, "alibi_tensor", [mstype.float32, mstype.float16], self.cls_name) if mask is not None: _check_input_dtype(mask.dtype, "input_mask", [mstype.float32, mstype.float16], self.cls_name) init_reset_is_tensor = isinstance(init_reset, Tensor) init_reset_is_default = init_reset is True batch_valid_length_is_tensor = isinstance(batch_valid_length, Tensor) batch_is_default = batch_valid_length is None _check_past_none_input_none(self.use_past, "init_reset", self.cls_name, True, init_reset_is_tensor, init_reset_is_default) _check_past_none_input_none(self.use_past, "batch_valid_length", self.cls_name, None, batch_valid_length_is_tensor, batch_is_default) if self.use_past: _check_input_dtype(init_reset.dtype, "init_reset", [mstype.bool_], self.cls_name) _check_input_dtype(batch_valid_length.dtype, "batch_valid_length", [mstype.int32], self.cls_name) return True class Baichuan13BAttention(nn.Cell): r""" This is an implementation of multihead attention in Baichuan. Args: - **batch_size** (int): The batch size of the input tensor when do increnmental prediction. Should be a positive value. When do training or prediction, the argument will not work and the user can just pass None to the argument. - **src_seq_length** (int): The sequence length of the query vector. - **tgt_seq_length** (int): The sequence length of the key and value vector. - **dim** (int): The hidden size of the input. - **head_dim** (int): The dim of head. - **n_heads** (int): The number of the heads. - **compute_dtype** (dtype.Number): The computation type of dense. Default mstype.float16. Should be mstype.float32 or mstype.float16. - **softmax_compute_type** (dtype.Number): The type of softmax computation module. Default mstype.float32. Should be mstype.float32 or mstype.float16. - **param_init_type** (dtype.Number): The parameter initialization type of the module. Default mstype. float32. Should be mstype.float32 or mstype.float16. - **use_past** (bool): Use the past state to compute, used for incremental prediction. For example, if we have two words and want to generate the ten more words. We just need to compute the two words' state only once, and generate the next word one by one. When use_past is True, there are two steps to run the prediction. In the first step, set the is_first_iteration to be True by `model.add_flags_recursive(is_first_iteration=True)`, and pass the full inputs. Then, set the is_first_iteration to be False by `model.add_flags_recursive(is_first_iteration=False)`. At this moment, pass the single step's input tensor, and loop it. Default False. - **parallel_config** (OpParallelConfig): The parallel configure. Default `default_dpmp_config`, an instance of `OpParallelConfig` with default args. Inputs: - **x** (Tensor) - The input tokens with shape (batch_size, src_seq_length, hidden_size) or (batch_size * src_seq_length, hidden_size), if the use_past is False or is_first_iteration=True. Otherwise, must be (batch_size, 1, hidden_size) - **alibi_tensor** (Tensor) - Alibi Tensor for position embedding used in attention. - **mask** (Tensor) - If the use_past is False or is_first_iteration=True, the attention mask matrix should ba (batch_size, src_seq_length, tgt_seq_length), or None. None means there will be no mask in softmax computation. Otherwise, the mask must be (batch_size, 1, tgt_seq_length) - **key_past** (Tensor) - Float16 tensor with shape (batch_size, num_heads, head_dim, tgt_seq_length). The past calculated key vector. Used for incremental prediction when the use_past is True. Default None. - **value_past** (Tensor) - Float16 tensor with shape (batch_size, num_heads, tgt_seq_length, head_dim). The past calculated value vector. Used for incremental prediction when the use_past is True. Default None. - **batch_valid_length** (Tensor) - Int32 tensor with shape (batch_size,) the past calculated the index. Used for incremental prediction when the use_past is True. Default None. Outputs: Tuple, a tuple contains(`output`, `layer_present`) - **output** (Tensor) - Tensor, the float tensor of the output of the layer with shape (batch_size, src_seq_length, hidden_size) or (batch_size * src_seq_length, hidden_size), if the use_past is False or is_first_iteration=True. Otherwise, it will be (batch_size, 1, hidden_size). - **layer_present** (Tuple) - A tuple of the Tensor of the projected key and value vector with ((batch_size, num_heads, head_dim, tgt_seq_length), (batch_size, num_heads, tgt_seq_length, head_dim)). """ def __init__(self, batch_size, seq_length, dim: int = 512, n_heads: int = 8, n_kv_heads: Optional[int] = None, compute_dtype=mstype.float16, softmax_compute_dtype=mstype.float32, param_init_type=mstype.float32, use_past=False, use_flash_attention=False, compute_in_2d=False, use_past_shard=False, parallel_config=TransformerOpParallelConfig()): super().__init__() self.seq_length = seq_length self.hidden_size = dim self.n_head = n_heads self.head_dim = dim // n_heads self.n_kv_head = n_heads if n_kv_heads is None else n_kv_heads self.n_rep = self.n_head // self.n_kv_head self.dtype = compute_dtype self.softmax_dtype = softmax_compute_dtype self.is_first_iteration = True self.use_past = use_past self.compute_in_2d = compute_in_2d self.use_flash_attention = use_flash_attention and FLASHATTENTION_VALID if self.hidden_size % self.n_head != 0: raise ValueError("For 'MultiHeadAttention', the class variable 'hidden_size' must be a multiple " "of 'n_head', but got the hidden_size is {} and the n_head is {}." .format(self.hidden_size, self.n_head)) if self.n_kv_head % parallel_config.model_parallel != 0: raise ValueError("For 'MultiHeadAttention', the class variable 'n_kv_head' must be a multiple of " "'parallel_config.model_parallel', but got the n_kv_head is {} " "and the parallel_config.model_parallel is {}." .format(self.n_kv_head, parallel_config.model_parallel)) self.inv_norm_factor = Tensor(1.0 / math.sqrt(self.head_dim), dtype=compute_dtype) self.reshape = P.Reshape() self.transpose = P.Transpose() self.merger_head_transpose = P.Transpose() self.batch_matmul = P.BatchMatMul() self.batch_matmul_q_k = P.BatchMatMul(transpose_b=True) self.mul = P.Mul() self.add = P.Add() self.add_alibi = P.Add() self.softmax = nn.Softmax().to_float(softmax_compute_dtype) self.cast = P.Cast() self.cast_attn = P.Cast() self.tile_kv = P.Tile() self.wo = Linear(in_channels=self.hidden_size, out_channels=self.hidden_size, has_bias=False, compute_dtype=compute_dtype, param_init_type=param_init_type) self.wq = Linear(self.hidden_size, self.hidden_size, has_bias=False, compute_dtype=compute_dtype, param_init_type=param_init_type) self.wk = Linear(self.hidden_size, self.n_kv_head * self.head_dim, has_bias=False, compute_dtype=compute_dtype, param_init_type=param_init_type) self.wv = Linear(self.hidden_size, self.n_kv_head * self.head_dim, has_bias=False, compute_dtype=compute_dtype, param_init_type=param_init_type) dp = parallel_config.data_parallel mp = parallel_config.model_parallel self.transpose.shard(((dp, 1, mp, 1),)) self.merger_head_transpose.shard(((dp, mp, 1, 1),)) self.batch_matmul_q_k.shard(((dp, mp, 1, 1), (dp, mp, 1, 1))) self.batch_matmul.shard(((dp, mp, 1, 1), (dp, mp, 1, 1))) self.mul.shard(((dp, mp, 1, 1), ())) self.add.shard(((dp, 1, 1, 1), (dp, mp, 1, 1))) self.add_alibi.shard(((dp, mp, 1, 1), (dp, mp, 1, 1))) self.softmax.softmax.shard(((dp, mp, 1, 1),)) self.tile_kv.shard(((dp * mp, 1, 1, 1),)) self.wq.shard(((dp, 1), (mp, 1))) self.wk.shard(((dp, 1), (mp, 1))) self.wv.shard(((dp, 1), (mp, 1))) self.wo.shard(((dp, mp), (1, mp))) if parallel_config.use_seq_parallel and self.is_first_iteration: self.wo.shard(((dp, mp), (1, mp)), out_strategy_matmul=((dp * mp, 1),)) if parallel_config.recompute.select_recompute: self.tile_kv.recompute() self.batch_matmul_q_k.recompute() self.mul.recompute() self.add.recompute() self.cast_attn.recompute() self.softmax.softmax.recompute() self.batch_matmul.recompute() if self.use_flash_attention: self.flash_attention = FlashAttention(self.head_dim, dp=dp, mp=mp, next_block_num=0) self.flash_attention.shard(((dp, mp, 1, 1), (dp, mp, 1, 1), (dp, mp, 1, 1), (dp, 1, 1), ())) if parallel_config.recompute.select_recompute: self.flash_attention.recompute() if self.use_past: # operators used for state reuse seq_range = np.arange(seq_length).reshape(1, 1, -1) self.range = Tensor(np.tile(seq_range, (batch_size, 1, 1)), mstype.int32) self.expand_dims = P.ExpandDims().shard(((dp, 1, 1),)) self.add_past = P.Add().shard(((dp, 1, 1, 1), (dp, 1, 1, 1))) self.equal = P.Equal().shard(((dp, 1, 1), (dp, 1, 1))) self.less = P.Less().shard(((dp, 1, 1), (dp, 1, 1))) self.mul_past = P.Mul().shard(((dp, 1, 1, 1), (dp, 1, 1, 1))) if use_past_shard: self.add_past.shard(((dp, mp, 1, 1), (dp, mp, 1, 1))) self.mul_past.shard(((dp, mp, 1, 1), (dp, 1, 1, 1))) def construct(self, x: Tensor, alibi_tensor: Tensor, mask=None, key_past=None, value_past=None, batch_valid_length=None): """Forward process of the MultiHeadAttention""" ori_dtype = x.dtype # [bs, seq/1, hidden_dim] or [bs * seq/1, hidden_dim] x = self.reshape(x, (-1, x.shape[-1])) # [bs * seq/1, hidden_dim] query = self.cast(self.wq(x), self.dtype) # dp, 1 -> dp, mp key = self.cast(self.wk(x), self.dtype) # dp, 1 -> dp, mp value = self.cast(self.wv(x), self.dtype) # dp, 1 -> dp, mp query = self.reshape(query, (-1, self._get_seq_length_under_incremental(self.seq_length), self.n_head, self.head_dim)) key = self.reshape(key, (-1, self._get_seq_length_under_incremental(self.seq_length), self.n_kv_head, self.head_dim)) value = self.reshape(value, (-1, self._get_seq_length_under_incremental(self.seq_length), self.n_kv_head, self.head_dim)) # [bs, seq/1, n_head/n_kv_head, head_dim] query = self.transpose(query, (0, 2, 1, 3)) key = self.transpose(key, (0, 2, 1, 3)) value = self.transpose(value, (0, 2, 1, 3)) # kv cache: [bs, n_kv_head, 1, head_dim] -> [bs, n_kv_head, seq, head_dim] key_present = key value_present = value if self.use_past: # The first graph with the input size of (bs, seq_length) if self.is_first_iteration: # Get the valid input length without padding valid_length_vector = ( self.less(self.range, batch_valid_length.view(-1, 1, 1))).astype(self.dtype) # Cover the key and value numbers corresponding to the padding position key_present = self.mul_past(key, self.expand_dims(valid_length_vector, 3)) value_present = self.mul_past(value, self.expand_dims(valid_length_vector, 3)) # The second graph with the inpus size of (bs, 1) else: # Get the current token position index valid_length = batch_valid_length - 1 valid_length = self.reshape(valid_length, (-1, 1, 1)) valid_length_vector = (self.equal(self.range, valid_length)).astype(self.dtype) # Pad the key and value to seq_length with only the position index not zero current_key = self.mul_past(key, self.expand_dims(valid_length_vector, 3)) current_value = self.mul_past(value, self.expand_dims(valid_length_vector, 3)) # Concat the previous saved state and current state key = self.add_past(key_past, current_key) value = self.add_past(value_past, current_value) # Update key_present and value_present for state update key_present = key value_present = value layer_present = (key_present, value_present) # kv share: [bs, n_kv_head, seq, head_dim] -> [bs, n_head, seq, head_dim] key = self._repeat_kv(key, self.n_rep) value = self._repeat_kv(value, self.n_rep) # q, k, v: [bs, n_head, seq/1, head_dim], [bs, n_head, seq, head_dim], [bs, n_head, seq, head_dim] if self.use_flash_attention: attention = self.flash_attention(query, key, value, mask) attention = self._merge_heads(attention) else: attention = self._attn(query, key, value, alibi_tensor, mask) # [bs, seq/1, hidden_dim] or [bs * seq/1, hidden_dim] output = self.wo(attention) # dp, mp -> dp, 1 / dp * mp, 1 output = self.cast(output, ori_dtype) return output, layer_present def _repeat_kv(self, x, rep): if rep == 1: return x bs, n_kv_head, seqlen, head_dim = x.shape x = self.reshape(x, (bs * n_kv_head, 1, seqlen, head_dim)) x = self.tile_kv(x, (1, rep, 1, 1)) x = self.reshape(x, (bs, n_kv_head * rep, seqlen, head_dim)) return x def _get_seq_length_under_incremental(self, length): r"""Return the length of the tensor. For the incremental prediction, the seq length for the input is 1. """ if self.use_past and not self.is_first_iteration: return 1 return length def _merge_heads(self, x): """ convert a 4d input to a 2d or 3d output Inputs: x: input tensor Output: x_merge: the 2d output """ # [bs, n_head, seq/1, head_dim] x = self.merger_head_transpose(x, (0, 2, 1, 3)) # dp,mp,1,1 -> dp,1,mp,1 # [bs, seq/1, n_head, head_dim] x_shape = x.shape if self.compute_in_2d: # [bs * seq/1, hidden_dim] new_shape = (-1, x_shape[-2] * x_shape[-1]) else: # [bs, seq/1, hidden_dim] new_shape = (x_shape[0], x_shape[1], -1) x_merge = self.reshape(x, new_shape) return x_merge def _attn(self, query, key, value, alibi_tensor, mask): """ Get the weighted score along the seq_length Inputs: query: the query matrix key: the key matrix value: the value matrix mask: the attention mask adder matrix with shape (batch_size, 1, seq_length, seq_length) Outputs: weighted_values: Tensor, the weighted sum scores """ # q, k: [bs, n_head, seq/1, head_dim], [bs, n_head, seq, head_dim] score = self.batch_matmul_q_k(query, key) # score: [bs, n_head, seq/1, seq] score = self.mul(score, self.inv_norm_factor) score = self.add_alibi(score, alibi_tensor) score = self.add(mask, score) attention_probs = self.softmax(self.cast_attn(score, self.softmax_dtype)) # score, v: [bs, n_head, seq/1, seq], [bs, n_head, seq, head_dim] weighted_values = self.batch_matmul(self.cast(attention_probs, self.dtype), value) # [bs, n_head, seq/1, head_dim] attention_merge = self._merge_heads(weighted_values) # [bs, seq/1, hidden_dim] or [bs * seq/1, hidden_dim] return attention_merge class NormHead(nn.Cell): """ NormHead Layer. Args: hidden_size (int): The hidden size of the input. vocab_size (int): Size of the dictionary of embeddings. compute_type (dtype.Number): The compute type. eps (number): A small positive value prevents division by zero. Inputs: - hidden_states (Tensor) - Tensor of shape :math:`(batch, seq_length, hidden_size)`. Outputs: Tensor of shape :math:`(batch, seq_length, vocab_size)`. """ def __init__(self, hidden_size, vocab_size, compute_dtype=mstype.float32, eps=1e-5): super().__init__() self.weight = Parameter( initializer(HeUniform(negative_slope=math.sqrt(5)), [vocab_size, hidden_size], mstype.float32), name='weight', parallel_optimizer=False) self.square = P.Square() self.sqrt = P.Sqrt() self.add = P.Add() self.real_div = P.RealDiv() self.eps = Tensor([eps], mstype.float32) self.matmul = P.MatMul(transpose_b=True) self.cast = P.Cast() self.compute_dtype = compute_dtype self.hidden_size = hidden_size self.vocab_size = vocab_size def construct(self, hidden_states): """Forward process of the NormHead""" out_shape = P.Shape()(hidden_states)[:-1] + (self.vocab_size,) hidden_states = P.Reshape()(hidden_states, (-1, self.hidden_size)) variance = self.square(self.weight).sum(axis=1).reshape(-1, 1) variance_eps = self.sqrt(self.add(variance, self.eps)) norm_weight = self.real_div(self.weight, variance_eps) ori_type = hidden_states.dtype out = self.matmul(hidden_states.astype(self.compute_dtype), norm_weight.astype(self.compute_dtype)) out = P.Reshape()(out, out_shape) return self.cast(out, ori_type) def shard(self, parallel_config): """sharding for norm head""" if parallel_config.vocab_emb_dp: self.square.shard(((1, 1),)) self.sqrt.shard(((1, 1),)) self.add.shard(((1, 1), (1,))) self.real_div.shard(((1, 1), (1, 1))) self.matmul.shard(((parallel_config.data_parallel, 1), (1, 1))) else: self.square.shard(((parallel_config.model_parallel, 1),)) self.sqrt.shard(((parallel_config.model_parallel, 1),)) self.add.shard(((parallel_config.model_parallel, 1), (1,))) self.real_div.shard(((parallel_config.model_parallel, 1), (parallel_config.model_parallel, 1))) self.matmul.shard(((parallel_config.data_parallel, 1), (parallel_config.model_parallel, 1))) if parallel_config.pipeline_stage > 1: self.matmul.pipeline_stage = parallel_config.pipeline_stage - 1
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。